Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Finiteness in the minimal models of Sullivan


Author: Stephen Halperin
Journal: Trans. Amer. Math. Soc. 230 (1977), 173-199
MSC: Primary 55H05; Secondary 55D15
MathSciNet review: 0461508
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a 1-connected topological space such that the vector spaces $ {\Pi _ \ast }(X) \otimes {\mathbf{Q}}$ and $ {H^\ast}(X;{\mathbf{Q}})$ are finite dimensional. Then $ {H^\ast}(X;{\mathbf{Q}})$ satisfies Poincaré duality. Set $ {\chi _\Pi } = \sum {( - 1)^p}\dim {\Pi _p}(X) \otimes {\mathbf{Q}}$ and $ {\chi _c} = $ $ \sum {( - 1)^p}\dim {H^p}(X;{\mathbf{Q}})$. Then $ {\chi _\Pi } \leqslant 0$ and $ {\chi _c} \geqslant 0$. Moreover the conditions: (1) $ {\chi _\Pi } = 0$, (2) $ {\chi _c} > 0,{H^\ast}(X;{\mathbf{Q}})$ evenly graded, are equivalent. In this case $ {H^\ast}(X;{\mathbf{Q}})$ is a polynomial algebra truncated by a Borel ideal.

Finally, if X is a finite 1-connected C.W. complex, and an r-torus acts continuously on X with only finite isotropy, then $ {\chi _\Pi } \leqslant - r$.


References [Enhancements On Off] (What's this?)

  • [1] On the rank of a space, Trans. Amer. Math. Soc. 166 (1972), 173–185. MR 0292071, 10.1090/S0002-9947-1972-0292071-8
  • [2] Henri Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 57–71 (French). MR 0042427
  • [3] W. H. Greub, S. Halperin and J. R. Vanstone, Connections, curvature and cohomology, vol. III, Academic Press, New York, 1975.
  • [4] J. L. Koszul, Sur un type d’algèbres différentielles en rapport avec la transgression, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 73–81 (French). MR 0042428
  • [5] Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 0646078
  • [6] Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
  • [7] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55H05, 55D15

Retrieve articles in all journals with MSC: 55H05, 55D15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1977-0461508-8
Keywords: Minimal models, homotopy Euler characteristic, Koszul complex, torus action, finite isotropy
Article copyright: © Copyright 1977 American Mathematical Society