Conjugate points of vectormatrix differential equations
Author:
Roger T. Lewis
Journal:
Trans. Amer. Math. Soc. 231 (1977), 167178
MSC:
Primary 34C10
MathSciNet review:
0442364
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The system of equations is considered where the coefficients are real, continuous, symmetric matrices, y is a vector, and is positive definite. It is shown that the wellknown quadratic functional criterion for existence of conjugate points for this system can be further utilized to extend results of the associated scalar equation to the vectormatrix case, and in some cases the scalar results are also improved. The existence and nonexistence criteria for conjugate points of this system are stated in terms of integral conditions on the eigenvalues or norms of the coefficient matrices.
 [1]
Calvin
D. Ahlbrandt, Disconjugacy criteria for selfadjoint differential
systems, J. Differential Equations 6 (1969),
271–295. MR 0244541
(39 #5855)
 [2]
Garret
J. Etgen, Oscillation criteria for nonlinear
second order matrix differential equations, Proc. Amer. Math. Soc. 27 (1971), 259–267. MR 0274859
(43 #617), http://dx.doi.org/10.1090/S00029939197102748597
 [3]
Garret
J. Etgen, Oscillatory properties of certain
nonlinear matrix differential systems of second order, Trans. Amer. Math. Soc. 122 (1966), 289–310. MR 0190421
(32 #7834), http://dx.doi.org/10.1090/S00029947196601904211
 [4]
I.
M. Gelfand and S.
V. Fomin, Calculus of variations, Revised English edition
translated and edited by Richard A. Silverman, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1963. MR 0160139
(28 #3353)
 [5]
I.
M. Glazman, Direct methods of qualitative spectral analysis of
singular differential operators, Translated from the Russian by the
IPST staff, Israel Program for Scientific Translations, Jerusalem, 1965;
Daniel Davey & Co., Inc., New York, 1966. MR 0190800
(32 #8210)
 [6]
H.
C. Howard, Oscillation criteria for matrix differential
equations, Canad. J. Math. 19 (1967), 184–199.
MR
0212252 (35 #3126)
 [7]
H.
Kaufman and R.
L. Sternberg, A twopoint boundary problem for ordinary
selfadjoint differential equations of even order, Duke Math. J.
20 (1953), 527–531. MR 0059443
(15,530c)
 [8]
Kurt
Kreith, Oscillation criteria for nonlinear
matrix differential equations, Proc. Amer.
Math. Soc. 26
(1970), 270–272. MR 0264163
(41 #8759), http://dx.doi.org/10.1090/S00029939197002641634
 [9]
Roger
T. Lewis, Oscillation and nonoscillation criteria for some
selfadjoint even order linear differential operators, Pacific J.
Math. 51 (1974), 221–234. MR 0350112
(50 #2605)
 [10]
Roger
T. Lewis, The existence of conjugate points for
selfadjoint differential equations of even order, Proc. Amer. Math. Soc. 56 (1976), 162–166. MR 0399576
(53 #3419), http://dx.doi.org/10.1090/S00029939197603995769
 [11]
V.
V. Martynov, The conditions of discreteness and continuity of the
spectrum in case of a selfconjugate system of even order differential
equations, Differencial′nye Uravnenija 1
(1965), 1578–1591 (Russian). MR 0188831
(32 #6263)
 [12]
Zeev
Nehari, Conjugate points, triangular matrices,
and Riccati equations, Trans. Amer. Math.
Soc. 199 (1974),
181–198. MR 0350113
(50 #2606), http://dx.doi.org/10.1090/S00029947197403501137
 [13]
Ben
Noble, Applied linear algebra, PrenticeHall, Inc., Englewood
Cliffs, N.J., 1969. MR 0246884
(40 #153)
 [14]
E.
S. Noussair and C.
A. Swanson, Oscillation criteria for differential systems, J.
Math. Anal. Appl. 36 (1971), 575–580. MR 0296417
(45 #5477)
 [15]
William
T. Reid, Ordinary differential equations, John Wiley &
Sons, Inc., New YorkLondonSydney, 1971. MR 0273082
(42 #7963)
 [16]
C.
A. Swanson, Oscillatory criteria for nonlinear
matrix differential inequalities., Proc. Amer.
Math. Soc. 24
(1970), 824–827. MR 0259248
(41 #3890), http://dx.doi.org/10.1090/S00029939197002592482
 [17]
E.
C. Tomastik, Oscillation of nonlinear matrix
differential equations of second order., Proc.
Amer. Math. Soc. 19
(1968), 1427–1431. MR 0232046
(38 #372), http://dx.doi.org/10.1090/S00029939196802320462
 [18]
E.
C. Tomastik, Singular quadratic functionals of
𝑛 dependent variables, Trans. Amer.
Math. Soc. 124
(1966), 60–76. MR 0196556
(33 #4743), http://dx.doi.org/10.1090/S00029947196601965561
 [19]
E.
C. Tomastik, Principal quadratic
functionals, Trans. Amer. Math. Soc. 218 (1976), 297–309.
MR
0405208 (53 #9002), http://dx.doi.org/10.1090/S00029947197604052088
 [1]
 C. D. Ahlbrandt, Disconjugacy criteria for selfadjoint differential systems, J. Differential Equations 6 (1969), 271295. MR 39 #5855. MR 0244541 (39:5855)
 [2]
 G. J. Etgen, Oscillation criteria for nonlinear second order matrix differential equations, Proc. Amer. Math. Soc. 27 (1971), 259267. MR 43 #617. MR 0274859 (43:617)
 [3]
 , Oscillatory properties of certain nonlinear matrix differential systems of second order, Trans. Amer. Math. Soc. 122 (1966), 289310. MR 32 #7834. MR 0190421 (32:7834)
 [4]
 I. M. Gel'fand and S. V. Fomin, Calculus of variations, Fizmatgiz, Moscow, 1961; English transl., PrenticeHall, Englewood Cliffs, N.J., 1963. MR 28 #3352; 28 #3353. MR 0160139 (28:3353)
 [5]
 I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Fizmatgiz, Moscow, 1963; English transl., Israel Program for Scientific Translations, Jerusalem, 1965; Davey, New York, 1966. MR 32 #2938; 32 #8210. MR 0190800 (32:8210)
 [6]
 H. C. Howard, Oscillation criteria for matrix differential equations, Canad. J. Math. 19 (1967), 184199. MR 35 #3126. MR 0212252 (35:3126)
 [7]
 H. Kaufman and R. L. Sternberg, A twopoint boundary problem for ordinary selfadjoint differential equations of even order, Duke Math. J. 20 (1953), 527531. MR 15, 530. MR 0059443 (15:530c)
 [8]
 K. Kreith, Oscillation criteria for nonlinear matrix differential equations, Proc. Amer. Math. Soc. 26 (1970), 270272. MR 41 #8759. MR 0264163 (41:8759)
 [9]
 R. T. Lewis, Oscillation and nonoscillation criteria for some selfadjoint even order linear differential operators, Pacific J. Math. 51 (1974), 221234. MR 50 #2605. MR 0350112 (50:2605)
 [10]
 , The existence of conjugate points for selfadjoint differential equations of even order, Proc. Amer. Math. Soc. 56 (1976), 162166. MR 0399576 (53:3419)
 [11]
 V. V. Martynov, The conditions for discreteness and continuity of the spectrum in case of a selfadjoint system of even order differential equations, Differencial'nye Uravnenija 1 (1965), 15781591. MR 32 #6263. MR 0188831 (32:6263)
 [12]
 Z. Nehari, Conjugate points, triangular matrices, and Riccati equations, Trans. Amer. Math. Soc. 199 (1974), 181198. MR 50 #2606. MR 0350113 (50:2606)
 [13]
 B. Noble, Applied linear algebra, PrenticeHall, Englewood Cliffs, N.J., 1969. MR 40 #153. MR 0246884 (40:153)
 [14]
 E. S. Noussair and C. A. Swanson, Oscillation criteria for differential systems, J. Math. Anal. Appl. 36 (1971), 575580. MR 45 #5477. MR 0296417 (45:5477)
 [15]
 W. T. Reid, Ordinary differential equations, Wiley, New York, 1971. MR 42 #7963. MR 0273082 (42:7963)
 [16]
 C. A. Swanson, Oscillation criteria for nonlinear matrix differential inequalities, Proc. Amer. Math. Soc. 24 (1970), 824827. MR 41 #3890. MR 0259248 (41:3890)
 [17]
 E. C. Tomastik, Oscillation of nonlinear matrix differential equations of second order, Proc. Amer. Math. Soc. 19 (1968), 14271431. MR 38 #372. MR 0232046 (38:372)
 [18]
 , Singular quadratic functionals of n dependent variables, Trans. Amer. Math. Soc. 124 (1966), 6076. MR 33 #4743. MR 0196556 (33:4743)
 [19]
 , Principal quadratic functionals, Trans. Amer. Math. Soc. 218 (1976), 297309. MR 0405208 (53:9002)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
34C10
Retrieve articles in all journals
with MSC:
34C10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197704423640
PII:
S 00029947(1977)04423640
Article copyright:
© Copyright 1977
American Mathematical Society
