Disjoint circles: a classification
Author:
Gary L. Ebert
Journal:
Trans. Amer. Math. Soc. 232 (1977), 83109
MSC:
Primary 50D45; Secondary 05B25
MathSciNet review:
0442819
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For q a primepower, let denote the miquelian inversive plane of order q. The classification of certain translation planes of order , called subregular, has been reduced to the classification of sets of disjoint circles in . While R. H. Bruck has extensively studied triples of disjoint circles, this paper is concerned with sets of four or more circles in . In a previous paper, the author has shown (for odd q) that the number of quadruples of disjoint circles in is asymptotic to . Hence a judicious approach to the classification problem is to study ``interesting'' quadruples. In general, let be a nonlinear set of n disjoint circles in . Let H be the subgroup of the collineation group of composed of collineations that permute the 's among themselves, and let K be that subgroup composed of collineations fixing each of the . An interesting set of n disjoint circles would be one for which . It is shown that if and only if  ()  When and under mild restrictions on q, an algorithm is developed that finds all nonlinear quadruples of disjoint circles satisfying the orthogonality conditions and having nontrivial group H. Given such a quadruple, the algorithm determines exactly what group H is acting. It is also shown that most quadruples in , for large q, do indeed satisfy the conditions . In addition, the cases when or 7 are explored to a lesser degree.
 [1]
R.
H. Bruck, Construction problems of finite projective planes,
Combinatorial Mathematics and its Applications (Proc. Conf., Univ. North
Carolina, Chapel Hill, N.C., 1967) Univ. North Carolina Press, Chapel
Hill, N.C., 1969, pp. 426–514. MR 0250182
(40 #3422)
 [2]
R.
H. Bruck, Construction problems in finite projective spaces,
Finite geometric structures and their applications (Centro Internaz. Mat.
Estivo (C.I.M.E.), II Ciclo, Bressanone, 1972) Edizioni Cremonese, Rome,
1973, pp. 105–188. MR 0342413
(49 #7159)
 [3]
Peter
Dembowski, Möbiusebenen gerader Ordnung, Math. Ann.
157 (1964), 179–205 (German). MR 0177344
(31 #1607)
 [4]
P.
Dembowski and D.
R. Hughes, On finite inversive planes, J. London Math. Soc.
40 (1965), 171–182. MR 0172156
(30 #2382)
 [5]
G. L. Ebert, Translation planes of order : asymptotic estimates, Trans. Amer. Math. Soc. (submitted).
 [6]
Heinz
Lüneburg, Die Suzukigruppen und ihre Geometrien,
SpringerVerlag, BerlinNew York, 1965 (German). MR 0207820
(34 #7634)
 [7]
W. F. Orr, The miquelian inversive plane and the associated projective planes, Dissertation, Univ. of Wisconsin, Madison, Wis., 1973.
 [8]
B.
L. van der Waerden and L.
J. Smid, Eine Axiomatik der Kreisgeometrie und der
Laguerregeometrie, Math. Ann. 110 (1935), no. 1,
753–776 (German). MR
1512968, http://dx.doi.org/10.1007/BF01448057
 [1]
 R. H. Bruck, Construction problems of finite projective planes, Combinatorial Mathematics and Its Applications, Univ. North Carolina Press, Chapel Hill, N. C., 1969, pp. 426514. MR 40 #3422. MR 0250182 (40:3422)
 [2]
 , Construction problems in finite projective spaces, Finite Geometric Structures and Their Applications, Edizioni Cremonese, Rome, 1973, pp. 107188. MR 49 #7159. MR 0342413 (49:7159)
 [3]
 P. Dembowski, Möbiusebenen gerader Ordnung, Math. Ann. 157 (1964), 179205. MR 31 #1607. MR 0177344 (31:1607)
 [4]
 P. Dembowski and D. R. Hughes, On finite inversive planes, J. London Math. Soc. 40 (1965), 171182. MR 30 #2382. MR 0172156 (30:2382)
 [5]
 G. L. Ebert, Translation planes of order : asymptotic estimates, Trans. Amer. Math. Soc. (submitted).
 [6]
 H. Lüneburg, Die Suzukigruppen und ihre Geometrien, Lecture Notes in Math., no. 10, SpringerVerlag, Berlin and New York, 1965. MR 34 #7634. MR 0207820 (34:7634)
 [7]
 W. F. Orr, The miquelian inversive plane and the associated projective planes, Dissertation, Univ. of Wisconsin, Madison, Wis., 1973.
 [8]
 B. L. Van der Waerden and L. J. Smid, Eine Axiomatik der Kreisgeometrie und der Laguerregeometrie, Math. Ann. 110 (1935), 753776. MR 1512968
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
50D45,
05B25
Retrieve articles in all journals
with MSC:
50D45,
05B25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197704428199
PII:
S 00029947(1977)04428199
Keywords:
Finite miquelian inversive plane,
disjoint circles,
linear sets of circles,
collineation group,
orthogonality,
inversion,
conjugate pairs of points,
linear fractional transformations,
triple transitivity,
cycle structure in symmetric groups,
matrix representation of circles,
nonzero squares in finite fields,
Sylow theorems
Article copyright:
© Copyright 1977
American Mathematical Society
