Decomposition spaces having arbitrarily small neighborhoods with -sphere boundaries

Author:
Edythe P. Woodruff

Journal:
Trans. Amer. Math. Soc. **232** (1977), 195-204

MSC:
Primary 57A10; Secondary 54B15

DOI:
https://doi.org/10.1090/S0002-9947-1977-0442944-2

MathSciNet review:
0442944

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *G* be an u.s.c. decomposition of . Let *H* denote the set of nondegenerate elements and *P* be the natural projection of onto . Suppose that each point in the decomposition space has arbitrarily small neighborhoods with 2-sphere boundaries which miss . We prove in this paper that this condition implies that is homeomorphic to . This answers a question asked by Armentrout [1, p. 15]. Actually, the hypothesis concerning neighborhoods with 2-sphere boundaries is necessary only for the points of .

**[1]**Steve Armentrout,*Monotone decompositions of*, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 1-25. MR**36**#5915. MR**0222865 (36:5915)****[2]**-,*A three-dimensional spheroidal space which is not a sphere*, Fund. Math.**68**(1970), 183-186. MR**42**#5239. MR**0270350 (42:5239)****[3]**W. T. Eaton,*The sum of solid spheres*, Michigan Math. J.**19**(1972), 193-207. MR**46**#8227. MR**0309116 (46:8227)****[4]**Robert D. Edwards and Leslie C. Glaser,*A method for shrinking decompositions of certain manifolds*, Trans. Amer. Math. Soc.**165**(1972), 45-56. MR**45**#4423. MR**0295357 (45:4423)****[5]**O. G. Harrold, Jr.,*A sufficient condition that a monotone image of the three-sphere be a topological three-sphere*, Proc. Amer. Math. Soc.**9**(1958), 846-850. MR**21**#2223. MR**0103454 (21:2223)****[6]**N. Hosay, Erratum to*"The sum of a cube and a crumpled cube is*", Notices Amer. Math. Soc.**11**(1964), p. 152.**[7]**L. V. Keldyš,*Topological imbeddings in Euclidean space*, Proc. Steklov Inst. Math.**81**(1966); English transl., Amer. Math. Soc., Providence, R. I., 1968. MR**34**#6745;**38**#696. MR**0232371 (38:696)****[8]**L. L. Lininger,*Some results on crumpled cubes*, Trans. Amer. Math. Soc.**118**(1965), 534-549. MR**31**#2717. MR**0178460 (31:2717)****[9]**A. Marin and Y. M. Visetti,*A general proof of Bing's shrinkability criterion*, Proc. Amer. Math. Soc.**53**(1975), 501-507. MR**0388319 (52:9156)****[10]**Louis F. McAuley,*Some upper semi-continuous decompositions of**into*, Ann. of Math. (2)**73**(1961), 437-457. MR**23**#A3554. MR**0126258 (23:A3554)****[11]**-,*Upper semicontinuous decompositions of**into**and generalizations to metric spaces*, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 21-26. MR**25**#4502.**[12]**T. M. Price,*A necessary condition that a cellular upper semicontinuous decomposition of**yield*, Trans. Amer. Math Soc.**122**(1966), 427-435. MR**33**#1843. MR**0193627 (33:1843)****[13]**Myra J. Reed,*Decomposition spaces and separation properties*, Doctoral Dissertation, SUNY, Binghamton, 1971.**[14]**Gordon Thomas Whyburn,*Analytic topology*, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942. MR**4**, 86. MR**0007095 (4:86b)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57A10,
54B15

Retrieve articles in all journals with MSC: 57A10, 54B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1977-0442944-2

Article copyright:
© Copyright 1977
American Mathematical Society