Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Closed convex invariant subsets of $ L\sb{p}(G)$


Author: Anthony To Ming Lau
Journal: Trans. Amer. Math. Soc. 232 (1977), 131-142
MSC: Primary 43A15
DOI: https://doi.org/10.1090/S0002-9947-1977-0477604-5
MathSciNet review: 0477604
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a locally compact group. We characterize in this paper closed convex subsets K of $ {L_p}(G),1 \leqslant p < \infty $, that are invariant under all left or all right translations. We prove, among other things, that $ K = \{ 0\} $ is the only nonempty compact (weakly compact) convex invariant subset of $ {L_p}(G)\;({L_1}(G))$. We also characterize affine continuous mappings from $ {P_1}(G)$ into a bounded closed invariant subset of $ {L_p}(G)$ which commute with translations, where $ {P_1}(G)$ denotes the set of nonnegative functions in $ {L_1}(G)$ of norm one. Our results have a number of applications to multipliers from $ {L_q}(G)$ into $ {L_p}(G)$.


References [Enhancements On Off] (What's this?)

  • [1] C.A. Akemann, Some mapping properties of the group algebras of a compact group, Pacific J. Math. 22 (1967), 1-8. MR 35 #3458. MR 0212587 (35:3458)
  • [2] B. Brainerd and R. E. Edwards, Linear operators which commute with translations. I: Representation theorems, J. Austral. Math. Soc. 6 (1966), 289-327. MR 34 #6542. MR 0206725 (34:6542)
  • [3] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97. MR 24 #A1632. MR 0131784 (24:A1632)
  • [4] G.I. Gaudry, Quasimeasures and multiplier problems, Doctoral Dissertation, Australian National Univ., Canberra, Australia, 1966.
  • [5] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand, Reinhold, New York and London, 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [6] E. Hewitt and K.A. Ross, Abstract harmonic analysis. Vol I: Structure of topological groups. Integration theory, group representations, Die Grundlehren Math. Wiss., Bd. 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [7] -, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren Math. Wiss., Bd. 152, Academic Press, New York; Springer-Verlag, Berlin, 1970. MR 41 #7378; erratum 42, p. 1825. MR 0262773 (41:7378)
  • [8] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [9] A. Hulanicki, Means and Følner condition on locally compact groups, Studia Math. 27 (1966), 87-104. MR 33 #4178. MR 0195982 (33:4178)
  • [10] J.W. Kitchen, Jr., The almost periodic measures on a compact abelian group, Monatsh. Math. 72 (1968), 217-219. MR 37 #5614. MR 0230049 (37:5614)
  • [11] R. Larsen, An introduction to the thoery of multipliers, Die Grundlehren Math. Wiss., Bd. 175, Springer-Verlag, Berlin and New York, 1971. MR 0435738 (55:8695)
  • [12] L.H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N.J. 1953. MR 14, 883. MR 0054173 (14:883c)
  • [13] Shôichirô Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659-664. MR 29 #488. MR 0163185 (29:488)
  • [14] J. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 14, 246. MR 0049911 (14:246c)
  • [15] James C.S. Wong, Topological invariant means on locally compact groups, Doctoral Dissertation, Univ. of British Columbia, Vancouver, B.C., 1969.
  • [16] -, Topologically stationary locally compact groups and amenability, Trans. Amer. Math Soc. 144 (1969), 351-363. MR 40 #2781. MR 0249536 (40:2781)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A15

Retrieve articles in all journals with MSC: 43A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0477604-5
Keywords: Locally compact group, left translations, right translations, convex sets, multipliers, operators commuting with translations, $ {L_p}$-spaces, measure algebra, convolution, multipliers, affine mappings
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society