Horocycle flows on certain surfaces without conjugate points
Author:
Patrick Eberlein
Journal:
Trans. Amer. Math. Soc. 233 (1977), 136
MSC:
Primary 58F15; Secondary 34C35, 53C20
MathSciNet review:
0516501
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the topological but not ergodic properties of the horocycle flow in the unit tangent bundle SM of a complete two dimensional Riemannian manifold M without conjugate points that satisfies the ``uniform Visibility'' axiom. This axiom is implied by the curvature condition but is weaker so that regions of positive curvature may occur. Compactness is not assumed. The method is to relate the horocycle flow to the geodesic flow for which there exist useful techniques of study. The nonwandering set for is classified into four types depending upon the fundamental group of M. The extremes that be a minimal set for and that admit periodic orbits are related to the existence or nonexistence of compact ``totally convex'' sets in M. Periodic points are dense in if they exist at all. The only compact minimal sets in are periodic orbits if M is noncompact The flow is minimal in SM if and only if M is compact. In general is topologically transitive in and the vectors in with dense orbits are classified. If the fundamental group of M is finitely generated and then is topologically mixing in SM.
 [1]
R.
L. Bishop and B.
O’Neill, Manifolds of negative
curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 0251664
(40 #4891), http://dx.doi.org/10.1090/S00029947196902516644
 [2]
Herbert
Busemann, The geometry of geodesics, Academic Press Inc., New
York, N. Y., 1955. MR 0075623
(17,779a)
 [3]
Patrick
Eberlein, The cut locus of noncompact finitely connected surfaces
without conjugate points, Comment. Math. Helv. 51
(1976), no. 1, 23–41. MR 0431264
(55 #4265)
 [4]
, Geodesies and ends in certain surfaces without conjugate points, Advances of Math. (to appear).
 [5]
Patrick
Eberlein, Geodesic flow in certain manifolds
without conjugate points, Trans. Amer. Math.
Soc. 167 (1972),
151–170. MR 0295387
(45 #4453), http://dx.doi.org/10.1090/S00029947197202953874
 [6]
Patrick
Eberlein, Geodesic flows on negatively curved manifolds. I,
Ann. of Math. (2) 95 (1972), 492–510. MR 0310926
(46 #10024)
 [7]
Patrick
Eberlein, Geodesic flows on negatively curved
manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 57–82.
MR
0314084 (47 #2636), http://dx.doi.org/10.1090/S00029947197303140840
 [8]
Patrick
Eberlein, Some properties of the fundamental group of a Fuchsian
manifold, Invent. Math. 19 (1973), 5–13. MR 0400250
(53 #4085)
 [9]
, When is a geodesic flow of Anosov type? II, J. Differential Geometry 8 (1973), 565577. MR 52 #1788.
 [10]
P.
Eberlein and B.
O’Neill, Visibility manifolds, Pacific J. Math.
46 (1973), 45–109. MR 0336648
(49 #1421)
 [11]
Harry
Furstenberg, The unique ergodicity of the horocycle flow,
Recent advances in topological dynamics (Proc. Conf., Yale Univ., New
Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer, Berlin,
1973, pp. 95–115. Lecture Notes in Math., Vol. 318. MR 0393339
(52 #14149)
 [12]
Anna
Grant, Surfaces of negative curvature and permanent regional
transitivity, Duke Math. J. 5 (1939), no. 2,
207–229. MR
1546119, http://dx.doi.org/10.1215/S001270943900520X
 [13]
Robert
Gulliver, On the variety of manifolds without
conjugate points, Trans. Amer. Math. Soc.
210 (1975),
185–201. MR 0383294
(52 #4175), http://dx.doi.org/10.1090/S00029947197503832940
 [14]
Gustav
A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2)
40 (1939), no. 2, 370–383. MR
1503464, http://dx.doi.org/10.2307/1968925
 [15]
Gustav
A. Hedlund, Fuchsian groups and transitive horocycles, Duke
Math. J. 2 (1936), no. 3, 530–542. MR
1545946, http://dx.doi.org/10.1215/S0012709436002466
 [16]
Ernst
Heintze and HansChristoph
Im Hof, Geometry of horospheres, J. Differential Geom.
12 (1977), no. 4, 481–491 (1978). MR 512919
(80a:53051)
 [17]
Eberhard
Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten
negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig
91 (1939), 261–304 (German). MR 0001464
(1,243a)
 [18]
Brian
Marcus, Ergodic properties of horocycle flows for surfaces of
negative curvature, Ann. of Math. (2) 105 (1977),
no. 1, 81–105. MR 0458496
(56 #16696)
 [19]
Brian
Marcus, Unique ergodicity of the horocycle flow: variable negative
curvature case, Israel J. Math. 21 (1975),
no. 23, 133–144. Conference on Ergodic Theory and Topological
Dynamics (Kibbutz Lavi, 1974). MR 0407902
(53 #11672)
 [20]
Peter
J. Nicholls, Transitive horocycles for Fuchsian groups, Duke
Math. J. 42 (1975), 307–312. MR 0365540
(51 #1792)
 [1]
 R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 149. MR 40 #4891. MR 0251664 (40:4891)
 [2]
 H. Busemann, The geometry of geodesies, Academic Press, New York, 1955. MR 17, 779. MR 0075623 (17:779a)
 [3]
 P. Eberlein, The cut locus of noncompact finitely connected surfaces without conjugate points, Comment Math. Helv. 51 (1976), 2344. MR 0431264 (55:4265)
 [4]
 , Geodesies and ends in certain surfaces without conjugate points, Advances of Math. (to appear).
 [5]
 , Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc. 167 (1972), 151170. MR 45 #4453. MR 0295387 (45:4453)
 [6]
 , Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2) 95 (1972), 492510. MR 46 #10024. MR 0310926 (46:10024)
 [7]
 , Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 5782. MR 47 #2636. MR 0314084 (47:2636)
 [8]
 , Some properties of the fundamental group of a Fuchsian manifold, Invent. Math. 19 (1973), 513. MR 0400250 (53:4085)
 [9]
 , When is a geodesic flow of Anosov type? II, J. Differential Geometry 8 (1973), 565577. MR 52 #1788.
 [10]
 P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45109. MR 0336648 (49:1421)
 [11]
 H. Furstenberg, The unique ergodicity of the horocycle flow, Recent Advances in Topological Dynamics, Lecture Notes in Math., vol. 318, SpringerVerlag, Berlin and New York, 1973, pp. 95115. MR 0393339 (52:14149)
 [12]
 A. Grant, Surfaces of negative curvature and permanent regional transitivity, Duke Math. J. 5 (1939), 207229. MR 1546119
 [13]
 R. Gulliver, On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc. 210 (1975), 185201. MR 52 #4175. MR 0383294 (52:4175)
 [14]
 G. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2) 40 (1939), 370383. MR 1503464
 [15]
 , Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530542. MR 1545946
 [16]
 E. Heintze and H.C. Im Hof, On the geometry of horospheres (preprint). MR 512919 (80a:53051)
 [17]
 E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sachs. Akad. Wiss. Leipzig 91 (1939), 261304. MR 0001464 (1:243a)
 [18]
 B. Marcus, Ergodic properties of horocycle flows on surfaces of negative curvature, Ann. of Math. 105 (1977), 81105. MR 0458496 (56:16696)
 [19]
 , Unique ergodicity of the horocycle flow: variable negative curvature case, Israel J. Math. 21 (1975), 133144. MR 0407902 (53:11672)
 [20]
 P. J. Nicholls, Transitive horocycles for Fuchsian groups, Duke Math. J. 42 (1975), 307312. MR 51 #1792. MR 0365540 (51:1792)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58F15,
34C35,
53C20
Retrieve articles in all journals
with MSC:
58F15,
34C35,
53C20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197705165013
PII:
S 00029947(1977)05165013
Article copyright:
© Copyright 1977
American Mathematical Society
