Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Galois groups and complex multiplication


Author: Michael Fried
Journal: Trans. Amer. Math. Soc. 235 (1978), 141-163
MSC: Primary 14H30; Secondary 14H25
DOI: https://doi.org/10.1090/S0002-9947-1978-0472917-6
MathSciNet review: 472917
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Schur problem for rational functions is linked to the theory of complex multiplication and thereby solved. These considerations are viewed as a special case of a general problem, prosaically labeled the extension of constants problem. The relation between this paper and a letter of J. Herbrand to E. Noether (published posthumously) is speculatively summarized in a conjecture that may be regarded as an arithmetic version of Riemann's existence theorem.


References [Enhancements On Off] (What's this?)

  • [Bu] W. Burnside, On simply transitive groups of prime degree, Quart. J. Math. 37 (1906), 215-222.
  • [Cl] A. Clebsch, Zür Theorie der Riemannshen Fläche, Math. Ann. 6 (1872), 216-230.
  • [Fr, 1] M. Fried, Field of definition of function fields, and Hurwitz families; and Groups as Galois groups over $ {\mathbf{Q}}(x)$, Comm. Algebra 5 (1977), 17-82. MR 0453746 (56:12006)
  • [Fr, 2] -, General moduli problems with application to the stable existence of Hurwitz families (preprint).
  • [Fr, 3] -, On Hilbert's irreducibility theorem, J. Number Theory 6 (1974), 211-231. MR 50 #2117. MR 0349624 (50:2117)
  • [Fr, 4] -, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55. MR 41 # 1688. MR 0257033 (41:1688)
  • [Fr, 5] -, Arithmetical properties of function fields. II, Acta Arith. 25 (1974), 225-258.
  • [Fu] W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542-575. MR 41 #5375. MR 0260752 (41:5375)
  • [Gr] A. Grothendieck, Géométrie formelle et géométrie algébrique, Séminaire Bourbaki, 11 ième annee: 1958/59, Fasc. 3, Exposé 182, Secrétariat Mathématique, Paris, 1959. MR 28 #1091.
  • [He] J. Herbrand, Zur théorie der algebraischen Functionen (Aus Briefen an E. Noether), Math. Ann. 106 (1932), 502. MR 1512770
  • [Hi] E. Hille, Analytic function theory, Vol. II, Ginn, Boston, 1962, pp. 136-141. MR 34 # 1490. MR 0201608 (34:1490)
  • [Hu] A. Hurwitz, Über Riemannshe Flachen mit gegeben Verzweigungsputen, Math. Ann. 39 (1891), 1-61. MR 1510692
  • [L] S. Lang, Diophantine geometry, Interscience Tracts in Pure and Appl. Math., no. 11, Interscience, New York, 1962. MR 26 # 119. MR 0142550 (26:119)
  • [Mum] D. Mumford, Introduction to algebraic geometry. Harvard Univ. Notes, 1966.
  • [O] A. P. Ogg, Rational points of finite order on elliptic curves, Invent. Math. 12 (1971), 105-111. MR 45 #178. MR 0291084 (45:178)
  • [Ri] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448. MR 1501252
  • [Sc] I. Schur, Über den Zusammenhang Zwischen einem Problem der Zahlentheorie and einem Satz über algebraische Functionen, S. B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1923), 123-134.
  • [Sh & T] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publ. Math. Soc. Japan 6, Math. Soc. Japan, Tokyo, 1961. MR 23 #A2419. MR 0125113 (23:A2419)
  • [Sp] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957. MR 19,1169. MR 0092855 (19:1169g)
  • [Sw-D] H. P. F. Swinnerton-Dyer, Applications of algebraic geometry to number theory, 1969 Number Theory Institute (Stony Brook, 1969), Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc. Providence, R.I., 1971, pp. 1-52. MR 49 #2720. MR 0337951 (49:2720)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14H30, 14H25

Retrieve articles in all journals with MSC: 14H30, 14H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0472917-6
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society