Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Galois groups and complex multiplication

Author: Michael Fried
Journal: Trans. Amer. Math. Soc. 235 (1978), 141-163
MSC: Primary 14H30; Secondary 14H25
MathSciNet review: 472917
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Schur problem for rational functions is linked to the theory of complex multiplication and thereby solved. These considerations are viewed as a special case of a general problem, prosaically labeled the extension of constants problem. The relation between this paper and a letter of J. Herbrand to E. Noether (published posthumously) is speculatively summarized in a conjecture that may be regarded as an arithmetic version of Riemann's existence theorem.

References [Enhancements On Off] (What's this?)

  • [Bu] W. Burnside, On simply transitive groups of prime degree, Quart. J. Math. 37 (1906), 215-222.
  • [Cl] A. Clebsch, Zür Theorie der Riemannshen Fläche, Math. Ann. 6 (1872), 216-230.
  • [Fr, 1] M. Fried, Fields of definition of function fields and Hurwitz families—groups as Galois groups, Comm. Algebra 5 (1977), no. 1, 17–82. MR 0453746
  • [Fr, 2] -, General moduli problems with application to the stable existence of Hurwitz families (preprint).
  • [Fr, 3] Michael Fried, On Hilbert’s irreducibility theorem, J. Number Theory 6 (1974), 211–231. MR 0349624
  • [Fr, 4] Michael Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41–55. MR 0257033
  • [Fr, 5] -, Arithmetical properties of function fields. II, Acta Arith. 25 (1974), 225-258.
  • [Fu] William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542–575. MR 0260752
  • [Gr] A. Grothendieck, Géométrie formelle et géométrie algébrique, Séminaire Bourbaki, 11 ième annee: 1958/59, Fasc. 3, Exposé 182, Secrétariat Mathématique, Paris, 1959. MR 28 #1091.
  • [He] Jacques Herbrand, Zur Theorie der algebraischen Funktionen, Math. Ann. 106 (1932), no. 1, 502 (German). MR 1512770, 10.1007/BF01455898
  • [Hi] Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
  • [Hu] A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, 10.1007/BF01199469
  • [L] Serge Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, No. 11, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. MR 0142550
  • [Mum] D. Mumford, Introduction to algebraic geometry. Harvard Univ. Notes, 1966.
  • [O] A. P. Ogg, Rational points of finite order on elliptic curves, Invent. Math. 12 (1971), 105–111. MR 0291084
  • [Ri] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), no. 3, 399–448. MR 1501252, 10.1090/S0002-9947-1923-1501252-3
  • [Sc] I. Schur, Über den Zusammenhang Zwischen einem Problem der Zahlentheorie and einem Satz über algebraische Functionen, S. B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1923), 123-134.
  • [Sh & T] Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, The Mathematical Society of Japan, Tokyo, 1961. MR 0125113
  • [Sp] George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957. MR 0092855
  • [Sw-D] H. P. F. Swinnerton-Dyer, Applications of algebraic geometry to number theory, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 1–52. MR 0337951

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14H30, 14H25

Retrieve articles in all journals with MSC: 14H30, 14H25

Additional Information

Article copyright: © Copyright 1978 American Mathematical Society