Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Invariant measures and equilibrium states for some mappings which expand distances


Author: Peter Walters
Journal: Trans. Amer. Math. Soc. 236 (1978), 121-153
MSC: Primary 28A65; Secondary 58F15
MathSciNet review: 0466493
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a certain collection of transformations T we define a Perron-Frobenius operator and prove a convergence theorem for the powers of the operator along the lines of the theorem D. Ruelle proved in his investigation of the equilibrium states of one-dimensional lattice systems. We use the convergence theorem to study the existence and ergodic properties of equilibrium states for T and also to study the problem of invariant measures for T. Examples of the transformations T considered are expanding maps, transformations arising from f-expansions and shift systems.


References [Enhancements On Off] (What's this?)

  • [1] L. M. Abramov, The entropy of a derived automorphism, Amer. Math. Soc. Transl. (2) 49 (1965), 162-166. MR 22 #4815.
  • [2] Roy L. Adler, 𝐹-expansions revisited, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Nedlund), Springer, Berlin, 1973, pp. 1–5. Lecture Notes in Math., Vol. 318. MR 0389825
  • [3] Rufus Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory 8 (1974/75), no. 4, 289–294. MR 0387539
  • [4] Rufus Bowen, Markov partitions for Axiom 𝐴 diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 0277003
  • [5] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
  • [6] M. E. Fischer, Physica 3 (1967).
  • [7] N. A. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1970), 365–394 (1970). MR 0274718
  • [8] F. Gantmacher, Theory of matrices, Vol. II, Chelsea, New York, 1959. MR 21 #6372c.
  • [9] F. Hofbauer, Examples for the non-uniqueness of the equilibrium states, Vienna, 1975 (preprint).
  • [10] Michael Keane, Strongly mixing 𝑔-measures, Invent. Math. 16 (1972), 309–324. MR 0310193
  • [11] K. Krzyżewski, On expanding mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 23–24 (English, with Russian summary). MR 0289753
  • [12] F. Ledrappier, Principe variationel et systèmes symboliques, Comm. Math. Phys. 33 (1973), 119-128.
  • [13] -, Mécanique statistique de l'équilibre pour un revêtement (to appear).
  • [14] Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339–348 (1970). MR 0274716
  • [15] M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math. 17 (1974), 380–391. MR 0374387
  • [16] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477–493. MR 0097374
  • [17] V. A. Rohlin, Exact endomorphism of a Lebesgue space, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14 (1964), 443–474 (Hungarian). MR 0228654
  • [18] -, Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys 22 (1967), no. 5, 1-52. MR 36 #349.
  • [19] S. M. Rudolfer and K. M. Wilkinson, A number-theoretic class of weak Bernoulli transformations, Math. Systems Theory 7 (1973), 14–24. MR 0323744
  • [20] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys. 9 (1968), 267–278. MR 0234697
  • [21] R. Sacksteder, On the convergence to invariant measures (to appear).
  • [22] -, The measures invariant under an expanding map (to appear).
  • [23] Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 0240824
  • [24] Peter Walters, Ruelle’s operator theorem and 𝑔-measures, Trans. Amer. Math. Soc. 214 (1975), 375–387. MR 0412389, 10.1090/S0002-9947-1975-0412389-8
  • [25] Peter Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1975), no. 4, 937–971. MR 0390180
  • [26] -, Ergodic theory--Introductory lectures, Lecture Notes in Math., vol. 458, Springer-Verlag, New York, 1975.
  • [27] Michael S. Waterman, Some ergodic properties of multi-dimensional 𝑓-expansions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 77–103. MR 0282939

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A65, 58F15

Retrieve articles in all journals with MSC: 28A65, 58F15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1978-0466493-1
Keywords: Perron-Frobenius operator, equilibrium state, Bernoulli shift, expanding map, f-expansion
Article copyright: © Copyright 1978 American Mathematical Society