Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Frattini subalgebras of finitely generated soluble Lie algebras

Author: Ralph K. Amayo
Journal: Trans. Amer. Math. Soc. 236 (1978), 297-306
MSC: Primary 17B30; Secondary 17B65
MathSciNet review: 0498733
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is motivated by a recent one of Stewart and Towers [8] investigating Lie algebras with ``good Frattini structure'' (definition below). One consequence of our investigations is to prove that any finitely generated metanilpotent Lie algebra has good Frattini structure, thereby answering a question of Stewart and Towers and providing a complete Lie theoretic analogue of the corresponding group theoretic result of Phillip Hall. It will also be shown that in prime characteristic, finitely generated nilpotent-by-finite-dimensional Lie algebras have good Frattini structure.

References [Enhancements On Off] (What's this?)

  • [1] R. K. Amayo, Engel Lie rings with chain conditions, Pacific J. Math. 54 (1974), 1-12. MR 0360727 (50:13174)
  • [2] R. K. Amayo and I. N. Stewart, Finitely generated Lie algebras, J. London Math. Soc. (2) 5 (1972), 697-703. MR 0323850 (48:2205)
  • [3] -, Infinite-dimensional Lie algebras, Noordhoff, Groningen, 1974.
  • [4] D. W. Barnes and M. L. Newell, Some theorems on saturated homomorphs of soluble Lie algebras, Math. Z. 115 (1967), 231-234. MR 0266969 (42:1871)
  • [5] C. W. Curtis, Non-commutative extensions of Hilbert rings, Proc. Amer. Math. Soc. 4 (1953), 945-955. MR 0059254 (15:498g)
  • [6] N. J. Divinsky, Rings and radicals, Univ. of Toronto Press, 1965. MR 0197489 (33:5654)
  • [7] J. Dixmier, Algébres enveloppantes, Cahier Scientifiques, fasc. 37, Gauthier-Villiars, Paris, 1974. MR 0498737 (58:16803a)
  • [8] D. Towers and I. Stewart, The Frattini subalgebras of certain infinite-dimensional soluble Lie algebras, J. London Math. Soc. (2) 11 (1975), 207-215. MR 0396710 (53:572)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B30, 17B65

Retrieve articles in all journals with MSC: 17B30, 17B65

Additional Information

Keywords: Lie algebra, Frattini subalgebra
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society