Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On a degenerate principal series of representations of $ {\rm U}(2, 2)$


Author: Yang Hua
Journal: Trans. Amer. Math. Soc. 238 (1978), 229-252
MSC: Primary 22E45; Secondary 43A30
DOI: https://doi.org/10.1090/S0002-9947-1978-0466417-7
MathSciNet review: 0466417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A degenerate principal series of representations $ T(\rho ,m; \cdot ),(\rho ,m) \in {\mathbf{R}} \times {\mathbf{Z}}$, of $ U(2,2)$, is realized on the Hilbert space of all square integrable functions on the space X of $ 2 \times 2$ Hermitian matrices. Using Fourier analysis, gamma functions, and Mellin analysis, we spectrally analyze the operator equation $ AT(\rho ,m;g) = T(\rho ,m;g)A$ for all $ g \in \mathfrak{G} = U(2,2)$ on an invariant subspace of $ {L^2}(X)$, and obtain the first main result: For $ \rho \ne 0$ or m odd, $ T(\rho ,m; \cdot )$ is irreducible. Then we define certain integral transforms on $ {L^2}(X)$ the analytic continuation of which leads to the second main result: $ T(0,2n; \cdot )$ is reducible.


References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and Guido Weiss, Representations of compact groups and spherical harmonics, Enseignement Math. (2) 14 (1968), 121–173 (1969). MR 0255877
  • [2] I. M. Gelfand and M. A. Neumark, Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin, 1957 (German). MR 0085262
  • [3] Kenneth I. Gross, The dual of a parabolic subgroup and a degenerate principal series of 𝑆𝑝(𝑛,𝐶), Amer. J. Math. 93 (1971), 398–428. MR 0304558, https://doi.org/10.2307/2373384
  • [4] K. I. Gross and R. A. Kunze, Fourier decompositions of certain representations, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Dekker, New York, 1972, pp. 119–139. Pure and Appl. Math., Vol. 8. MR 0427541
  • [5] Kenneth I. Gross and Ray A. Kunze, Fourier Bessel transforms and holomorphic discrete series, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Springer, Berlin, 1972, pp. 79–122. Lecture Notes in Math., Vol. 266. MR 0486318
  • [6] R. A. Kunze, Intertwining operators and uniformly bounded representations, Lecture Notes, University of California at Irvine.
  • [7] M. A. Naimark, Linear representations of the Lorentz group, Translated by Ann Swinfen and O. J. Marstrand; translation edited by H. K. Farahat. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0170977
  • [8] E. M. Stein, Analysis in matrix spaces and some new representations of 𝑆𝐿(𝑁,𝐶), Ann. of Math. (2) 86 (1967), 461–490. MR 0219670, https://doi.org/10.2307/1970611
  • [9] N. Ja. Vilenkin, Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1968. MR 0229863
  • [10] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 43A30

Retrieve articles in all journals with MSC: 22E45, 43A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0466417-7
Keywords: $ U(2,2)$, $ SU(2)$, unitary representation, irreducible representation, reducible representation, degenerate principal series, Fourier transform, intertwining operator, Mellin transform, distribution, gamma function, analytic continuation, singular integral
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society