Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On a degenerate principal series of representations of $ {\rm U}(2, 2)$

Author: Yang Hua
Journal: Trans. Amer. Math. Soc. 238 (1978), 229-252
MSC: Primary 22E45; Secondary 43A30
MathSciNet review: 0466417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A degenerate principal series of representations $ T(\rho ,m; \cdot ),(\rho ,m) \in {\mathbf{R}} \times {\mathbf{Z}}$, of $ U(2,2)$, is realized on the Hilbert space of all square integrable functions on the space X of $ 2 \times 2$ Hermitian matrices. Using Fourier analysis, gamma functions, and Mellin analysis, we spectrally analyze the operator equation $ AT(\rho ,m;g) = T(\rho ,m;g)A$ for all $ g \in \mathfrak{G} = U(2,2)$ on an invariant subspace of $ {L^2}(X)$, and obtain the first main result: For $ \rho \ne 0$ or m odd, $ T(\rho ,m; \cdot )$ is irreducible. Then we define certain integral transforms on $ {L^2}(X)$ the analytic continuation of which leads to the second main result: $ T(0,2n; \cdot )$ is reducible.

References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, Enseignement Math. (2) 14 (1968), 121-173. MR 41 #537. MR 0255877 (41:537)
  • [2] I. M. Gelfand and M. A. Naimark, Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin 1957. MR 19, 13. MR 0085262 (19:13g)
  • [3] K. I. Gross, The dual of a parabolic subgroup and a degenerate principal series of $ Sp(n,{\mathbf{C}})$, Amer. J. Math. 93 (1971), 398-428. MR 46 #3693. MR 0304558 (46:3693)
  • [4] K. I. Gross and R. A. Kunze, Fourier decompositions of certain representations, Symmetric Spaces, Dekker, New York, 1972. MR 0427541 (55:572)
  • [5] K. I. Gross, Fourier Bessel transforms and holomorphic discrete series, Conf. on Harmonic Analysis, Springer-Verlag, Berlin and New York, 1972. MR 0486318 (58:6075)
  • [6] R. A. Kunze, Intertwining operators and uniformly bounded representations, Lecture Notes, University of California at Irvine.
  • [7] M. A. Naimark, Linear representations of the Lorentz group, Macmillan, New York, 1964. MR 30 #1211. MR 0170977 (30:1211)
  • [8] E. M. Stein, Analysis in matrix spaces and some new representations of $ SL(n,C)$, Ann. of Math. (2) 86 (1967), 461-490. MR 36 #2749. MR 0219670 (36:2749)
  • [9] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monographs, Vol. 22, Amer. Math. Soc., Providence, R. I., 1968. MR 37 #5429. MR 0229863 (37:5429)
  • [10] G. N. Watson, A treatise on the theory of Bessel functions, Macmillan, New York, 1944. MR 6, 64. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 43A30

Retrieve articles in all journals with MSC: 22E45, 43A30

Additional Information

Keywords: $ U(2,2)$, $ SU(2)$, unitary representation, irreducible representation, reducible representation, degenerate principal series, Fourier transform, intertwining operator, Mellin transform, distribution, gamma function, analytic continuation, singular integral
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society