Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complete universal locally finite groups


Author: Ken Hickin
Journal: Trans. Amer. Math. Soc. 239 (1978), 213-227
MSC: Primary 20E25; Secondary 20F50
DOI: https://doi.org/10.1090/S0002-9947-1978-0480750-4
MathSciNet review: 0480750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper will partly strengthen a recent application of model theory to the construction of sets of pairwise nonembeddable universal locally finite groups [8]. Our result is

Theorem. There is a set $ \mathcal{U}$ of $ {2^{{\aleph _1}}}$ universal locally finite groups of order $ {\aleph _1}$ with the following properties:

0.1. If $ U \ne V \in \mathcal{U}$ and A and B are uncountable sugroups of U and V, then A and B are not isomorphic. Let A be an uncountable subgroup of $ U \in \mathcal{U}$.

0.2. A does not belong to any proper variety of groups, and

0.3. A is not isomorphic to any of its proper subgroups.

0.4. Every $ U \in \mathcal{U}$ is a complete group (every automorphism of U is inner).


References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, Lecture notes on nilpotent groups, Regional Conf. Ser. in Math., no. 2, Amer. Math. Soc., Providence, R. I., 1971. MR 44 #315. MR 0283082 (44:315)
  • [2] G. Fodor, On stationary sets and regressive function, Acta Sci. Math. (Szeged) 27 (1966), 105-110. MR 34 #66. MR 0200167 (34:66)
  • [3] Philip Hall, Some constructions for locally finite groups, J. London Math. Soc. 34 (1959), 305-319. MR 0162845 (29:149)
  • [4] K. Hickin, Countable type local theorems in algebra, J. Algebra 27 (1973), 523-537. MR 49 #5179. MR 0340424 (49:5179)
  • [5] B. Jónsson, Homogeneous universal relational systems, Math. Scand. 8 (1960), 137-142. MR 23 #A2328. MR 0125021 (23:A2328)
  • [6] O. Kegel and B. Wehrfritz, Locally finite groups, North-Holland, Amsterdam, 1973. MR 0470081 (57:9848)
  • [7] A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227-255. MR 41 #5499. MR 0260879 (41:5499)
  • [8] A. Macintyre and S. Shelah, Uncountable universal locally finite groups (to appear). MR 0439625 (55:12511)
  • [9] A. Macintyre, Existentially closed structures and Gentzen's principle (to appear).
  • [10] M. Morley and R. L. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57. MR 27 #37. MR 0150032 (27:37)
  • [11] B. H. Neumann, Permutational products of groups, J. Austral. Math. Soc. 1 (1959/60), 299-310. MR 23 #A922. MR 0123597 (23:A922)
  • [12] -, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A. 246 (1954), 503-554. MR 16, 10. MR 0062741 (16:10d)
  • [13] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 #4785. MR 0167513 (29:4785)
  • [14] W. Sierpiński, Cardinal and ordinal numbers, 2nd rev. ed., Monografie Mat., vol., 34, PWN, Warsaw, 1965. MR 33 #2549.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20E25, 20F50

Retrieve articles in all journals with MSC: 20E25, 20F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0480750-4
Keywords: Locally finite groups, universal homogeneous groups, complete groups, subgroup-incomparability, regular representation, group amalgams
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society