Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conditionally compact semitopological one-parameter inverse semigroups of partial isometries


Author: M. O. Bertman
Journal: Trans. Amer. Math. Soc. 240 (1978), 263-275
MSC: Primary 22A20; Secondary 47D05
DOI: https://doi.org/10.1090/S0002-9947-1978-0476906-7
MathSciNet review: 0476906
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The algebraic structure of one-parameter inverse semigroups has been completely described. Furthermore, if B is the bicyclic semigroup and if B is contained in any semitopological semigroup, the relative topology on B is discrete. We show that if F is an inverse semigroup generated by an element and its inverse, and F is contained in a compact semitopological semigroup, then the relative topology is discrete; in fact, if F is any one-parameter inverse semigroup contained in a compact semitopological semigroup, then the multiplication on F is jointly continuous if and only if the inversion is continuous on F, and we describe $ \bar F$ in that case. We also show that if $ \{ {J_t}\} $ is a one-parameter semigroup of bounded linear operators on a (separable) Hilbert space, then $ \{ {J_t}\} \cup \{ J_t^\ast\} $ generates a one-parameter inverse semigroup T with $ J_t^{ - 1} = J_t^\ast$ if and only if $ \{ {J_t}\} $ is a one-parameter semigroup of partial isometries, and we describe the weak operator closure of T in that case.


References [Enhancements On Off] (What's this?)

  • [1] M. Bertman, Free topological inverse semigroups, Semigroup Forum 8 (1974), 226-270. MR 0376943 (51:13118)
  • [2] M. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. Sect. A 76 (1975), 219-226. MR 0430136 (55:3143)
  • [3] G. Brown and W. Moran, Idempotents of compact monothetic semigroups, Proc. London Math. Soc. 22 (1971), 203-216. MR 0288210 (44:5408)
  • [4] A. H. Clifford and G. Preston, The algebraic theory of semigroups, vol. I, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 0132791 (24:A2627)
  • [5] C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115-126. MR 0252547 (40:5767)
  • [6] -, One-parameter inverse semigroups, Trans. Amer. Math. Soc. 168 (1972), 53-66. MR 0296197 (45:5258)
  • [7] M. Embry, A. Lambert and L. Wallen, A simplified treatment of the structure of semigroups of partial isometries, Michigan Math. J. 22 (1975), 175-179. MR 0390832 (52:11655)
  • [8] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 0208368 (34:8178)
  • [9] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Merrill, Columbus, Ohio, 1966. MR 0209387 (35:285)
  • [10] K. DeLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-98. MR 0131784 (24:A1632)
  • [11] D. B. McAllister, A homomorphism theorem for semigroups, J. London Math. Soc. 43 (1968), 355-366. MR 0224730 (37:329)
  • [12] L. J. Wallen, Decomposition of semi-groups of partial isometries, Indiana Univ. Math. J. 20 (1970), 207-212. MR 0268720 (42:3617)
  • [13] T. T. West, Weakly compact monothetic semigroups of operators in Banach spaces, Proc. Roy. Irish Acad. Sect. A 67 (1968), 27-37. MR 0239467 (39:824)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22A20, 47D05

Retrieve articles in all journals with MSC: 22A20, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0476906-7
Keywords: Partial isometries, one-parameter semigroups, inverse semigroups, compact semitopological semigroups
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society