Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak uniqueness sets for discrete groups


Authors: Marek Bożejko and Tadeusz Pytlik
Journal: Trans. Amer. Math. Soc. 241 (1978), 273-282
MSC: Primary 22D15; Secondary 42A44, 43A46
DOI: https://doi.org/10.1090/S0002-9947-1978-0480852-2
MathSciNet review: 0480852
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For discrete groups we introduce a new class of sets, called weak uniqueness sets, which for abelian groups contains the class of sets of uniqueness. Considered is the problem of determining groups for which every finite set is a weak uniqueness set. Some examples are given.


References [Enhancements On Off] (What's this?)

  • [1] N. Bary, A treatise on trigonometric series, vols. 1, 2 (English translation), Pergamon Press, Oxford, 1964.
  • [2] J. Dixmier, Les $ C^{\ast}$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 0171173 (30:1404)
  • [3] R. Godement, Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires, J. Math. Pures Appl. 30 (1951), 1-110. MR 0041857 (13:12a)
  • [4] S. Grosser and M. Moskowitz, Harmonic analysis on central topological groups, Trans. Amer. Math. Soc. 156 (1971), 419-454. MR 0276418 (43:2165)
  • [5] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vols. 1, 2, Springer, Berlin, 1963/1970. MR 0262773 (41:7378)
  • [6] A. Hulanicki, On symmetry of group algebras of discrete nilpotent groups, Studia Math. 35 (1970), 207-219. MR 0278082 (43:3814)
  • [7] -, On the spectral radius of hermitian elements in group algebras, Pacific J. Math. 18 (1966), 277-287. MR 0198267 (33:6426)
  • [8] E. Kaniuth and G. Schlichting, Zur harmonischen Analyse klassenkompaktten Gruppen II, Inventiones Math. 10 (1970), 332-345. MR 0316973 (47:5521)
  • [9] E. Kaniuth and D. Steiner, On complete regularity of group algebras, Math. Ann. 204 (1973), 305-329. MR 0470613 (57:10361)
  • [10] I. Kaplansky, Group algebras in the large, Tôhoku Math. J. 3 (1951), 249-256. MR 0048712 (14:58c)
  • [11] T. W. Körner, A pseudo function on a Helson set, Astérisque, 5, S.M.F., 1973.
  • [12] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland, Amsterdam, 1970.
  • [13] R. D. Mosak, The $ {L^1}$-and $ {C^{\ast}}$-algebras of $ {[FIA]_B}$ groups and their representations, Trans. Amer. Math. Soc. 163 (1972), 277-310. MR 0293016 (45:2096)
  • [14] T. Pytlik, Harmonic analysis on semi-direct product of abelian groups, J. Functional Analysis (submitted).
  • [15] Derek J. S. Robinson, Finiteness conditions and generalized soluble group. I, II, Springer-Verlag, Berlin and New York, 1972.
  • [16] W. Rudin, Fourier analysis on groups, Interscience, New York, 1962. MR 0152834 (27:2808)
  • [17] I. E. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69-105. MR 0019617 (8:438c)
  • [18] E. Thoma, Über unitäre Darstellungen ab zählbarer diskreten Gruppen, Math. Ann. 163 (1964), 111-138. MR 0160118 (28:3332)
  • [19] -, Zur harmonischen Analyse klassenfiniter Gruppen, Inventiones Math. 3 (1967), 20-42. MR 0213479 (35:4343)
  • [20] A. Zygmund, Trigonometrie series, 2nd ed., vol. 2, Cambridge University Press, Cambridge, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D15, 42A44, 43A46

Retrieve articles in all journals with MSC: 22D15, 42A44, 43A46


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0480852-2
Keywords: Weak uniqueness sets, weak* topology, maximal ideal space
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society