Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The order and symbol of a distribution


Author: Alan Weinstein
Journal: Trans. Amer. Math. Soc. 241 (1978), 1-54
MSC: Primary 58G15; Secondary 46G05, 58C35
DOI: https://doi.org/10.1090/S0002-9947-1978-0492288-9
MathSciNet review: 492288
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A definition is given, for an arbitrary distribution g on a manifold X, of the order and symbol of g at a point $ ({\chi ,\xi })$ of the cotangent bundle $ T^{\ast}X$.

If $ X = \textbf{R}^n$, the order of g at $ ({0,\xi})$ is the growth order as $ \tau \to \infty $ of the distributions $ {g^\tau }(x) = {e^{ - i\sqrt \tau \langle x,\xi \rangle }}g\left( {x /\sqrt \tau } \right)$ ; if the order is less than or equal to N, the N-symbol of g is the family $ {g^\tau }$ modulo $ O({{\tau ^{N - 1/2}}})$.

It is shown that the order and symbol behave in a simple way when g is acted upon by a pseudo-differential operator. If g is a Fourier integral distribution, suitable identifications can be made so that the symbol defined here agrees with the bundle-valued symbol defined by Hörmander.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderon, Calcul précisé sur les opérateurs intégraux-singuliers, Cours professé à la faculté des sciences de Paris, notes par Marc Durand, 1966.
  • [2] J. J. Duistermaat, Fourier integral operators, New York Univ., 1973. MR 0451313 (56:9600)
  • [3] V. Guillemin, Symplectic spinors and partial differential equations, Colloque de Géométrie Sympléctique et Physique Mathématique, C.N.R.S., Paris, 1976. MR 0461591 (57:1576)
  • [4] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [5] -, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. (2) 83 (1966), 129-209. MR 38 #1387. MR 0233064 (38:1387)
  • [5a] -, Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 138-183. MR 52 #4033. MR 0383152 (52:4033)
  • [6] -, Fourier integral operators. I, Acta Math. 127 (1971), 79-183. MR 52 #9299. MR 0388463 (52:9299)
  • [7] B. Kostant, Symplectic spinors, Symposia Math. 14 (1974), pp. 139-152. MR 53 #4139. MR 0400304 (53:4139)
  • [8] S. Łojasiewicz, Sur la valeur et la limite d'une distribution en un point, Studia Math. 16 (1957), 1-36. MR 19, 433. MR 0087905 (19:433d)
  • [9] -, Sur la fixation des variables dans une distribution, Studia Math. 17 (1958), 1-64. MR 21 #5892. MR 0107167 (21:5892)
  • [10] A. Melin, Lower bounds for pseudo-differential operators, Ark. Math. 9 (1971), 117-140. MR 48 #6735. MR 0328393 (48:6735)
  • [11] L. Schwartz, Théorie des distributions, Publ. Inst. Math. Univ. Strasbourg, nos. 9-10, Hermann, Paris, 1966. MR 35 #730. MR 0209834 (35:730)
  • [12] A. Weinstein, The principal symbol of a distribution, Bull. Amer. Math. Soc. 82 (1976), 548-550. MR 0407595 (53:11367)
  • [13] -, Lectures on sympletic manifolds, CBMS Regional Conf. Ser. in Math., vol. 29, Amer. Math. Soc., Providence, R. I. 1977. MR 0464312 (57:4244)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G15, 46G05, 58C35

Retrieve articles in all journals with MSC: 58G15, 46G05, 58C35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0492288-9
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society