Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ R$-separation of variables for the four-dimensional flat space Laplace and Hamilton-Jacobi equations


Authors: E. G. Kalnins and Willard Miller
Journal: Trans. Amer. Math. Soc. 244 (1978), 241-261
MSC: Primary 22E70; Secondary 33A75, 35A25, 53B20
DOI: https://doi.org/10.1090/S0002-9947-1978-0506618-2
MathSciNet review: 506618
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All A-separable orthogonal coordinate systems for the complex equations $ \Sigma_{i = 1}^4 {{\partial _{ii}}\Psi = 0} $ and $ \Sigma_{i = 1}^4 {{{({\partial _i}W)}^2} = 0} $ are classified and it is shown that these equations separate in exactly the same systems.


References [Enhancements On Off] (What's this?)

  • [1] E. G. Kalnins and W. Miller, Jr., Lie theory and the wave equation in space time. II: The group $ SO(4,\textbf{C})$, SIAM J. Math. Anal. 9 (1978), 12-33. MR 0507309 (58:22421b)
  • [2] -, Lie theory and the wave equation in space time. IV: The Klein Gordon equation and the Poincaré group, J. Mathematical Phys. (to appear). MR 0507311 (58:22421d)
  • [3] -, Orthogonal separable coordinates for the Laplace-Beltrami operator on the complex four-sphere (preprint).
  • [4] -, Lie theory and the wave equation in space time. V: R-separable solutions of the wave equation, J. Mathematical Phys. 18 (1977), 1741-1751.
  • [5] -, Lie theory and the wave equation in space time. III: Semi-subgroup coordinates, J. Mathematical Phys. 18 (1977), 271-280. MR 0507310 (58:22421c)
  • [6] M. Bêcher, Die Reihentwickelungen der Potentialtheorie, Leipzig, 1894.
  • [7] L. P. Eisenhart, Stäckel systems in conformal Euclidean space, Ann. of Math. (2) 36 (1935), 57-70. MR 1503208
  • [8] C. Boyer, E. G. Kalnins and W. Miller, Jr., R-separable coordinates for three-dimensional complex Riemannian spaces, Trans. Amer. Math. Soc. 242 (1978), 355-376. MR 496814 (81h:53015)
  • [9] W. Miller, Jr., Symmetry and separation of variables, Encyclopedia of Applicable Mathematics, Vol. 4, Addison-Wesley, Reading, Mass., 1977. MR 0460751 (57:744)
  • [10] P. Moon and D. E. Spencer, Theorems on separability in Riemannian n-space, Proc. Amer. Math. Soc. 3 (1952), 635-642. MR 0049439 (14:173h)
  • [11] P. Stäckel, Über die integration der Hamilton-Jacobischen differentialgleichung mittels separation der variabelen, Halle, 1891.
  • [12] L. P. Eisenhart, Separable systems of Stäckel, Ann. of Math. (2) 35 (1934), 284-305. MR 1503163
  • [13] P. Moon and D. E. Spencer, Separability conditions for the Laplace and Helmholtz equations, J. Franklin Inst. 253 (1952), 585-600. MR 0049437 (14:173f)
  • [14] L. P. Eisenhart, Riemannian geometry, 2nd printing, Princeton Univ. Press, Princeton, N. J., 1949, pp. 89-92. MR 0035081 (11:687g)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E70, 33A75, 35A25, 53B20

Retrieve articles in all journals with MSC: 22E70, 33A75, 35A25, 53B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0506618-2
Keywords: Conformal symmetry, flat space, Hamilton-Jacobi equation, Laplace equation, separation of variables
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society