Harmonic functions and mass cancellation

Author:
J. R. Baxter

Journal:
Trans. Amer. Math. Soc. **245** (1978), 375-384

MSC:
Primary 60J05; Secondary 31B05, 60J65

DOI:
https://doi.org/10.1090/S0002-9947-1978-0511416-X

MathSciNet review:
511416

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If a function on an open set in has the mean value property for one ball at each point of the domain, the function will be said to possess the restricted mean value property. (The ordinary or unrestricted mean value property requires that the mean value property hold for every ball in the domain.) We specify the single ball at each point *x* by its radius , a function of *x*. Under appropriate conditions on and the function, the restricted mean value property implies that the function is harmonic, giving a converse to the mean value theorem (see references). In the present paper a converse to the mean value theorem is proved, in which the function is well behaved, but the function is only required to be nonnegative. A converse theorem for more general means than averages over balls is also obtained. These results extend theorems of D. Heath, W. Veech, and the author (see references). Some connections are also pointed out between converse mean value theorems and mass cancellation.

**[1]**M. A. Akcoglu and R. W. Sharpe,*Ergodic theory and boundaries*, Trans. Amer. Math. Soc.**132**(1968), 447–460. MR**0224770**, https://doi.org/10.1090/S0002-9947-1968-0224770-7**[2]**John R. Baxter,*Restricted mean values and harmonic functions*, Trans. Amer. Math. Soc.**167**(1972), 451–463. MR**0293112**, https://doi.org/10.1090/S0002-9947-1972-0293112-4**[3]**J. R. Baxter and R. V. Chacon,*Potentials of stopped distributions*, Illinois J. Math.**18**(1974), 649–656. MR**0358960****[4]**J. R. Baxter and R. V. Chacon,*Stopping times for recurrent Markov processes*, Illinois J. Math.**20**(1976), no. 3, 467–475. MR**0420860****[5]**R. V. Chacon,*Potential processes*, Trans. Amer. Math. Soc.**226**(1977), 39–58. MR**0501374**, https://doi.org/10.1090/S0002-9947-1977-0501374-5**[6]**S. R. Foguel,*Iterates of a convolution on a non abelian group*, Ann. Inst. H. Poincaré Sect. B (N.S.)**11**(1975), no. 2, 199–202 (English, with French summary). MR**0400332****[7]**David Heath,*Functions possessing restricted mean value properties*, Proc. Amer. Math. Soc.**41**(1973), 588–595. MR**0333213**, https://doi.org/10.1090/S0002-9939-1973-0333213-1**[8]**Itrel Monroe,*On embedding right continuous martingales in Brownian motion*, Ann. Math. Statist.**43**(1972), 1293–1311. MR**0343354**, https://doi.org/10.1214/aoms/1177692480**[9]**Steven Orey,*An ergodic theorem for Markov chains*, Z. Wahrscheinlichkeitstheorie Verw. Gebiete**1**(1962), 174–176. MR**0145587**, https://doi.org/10.1007/BF01844420**[10]**Donald Ornstein and Louis Sucheston,*An operator theorem on 𝐿₁ convergence to zero with applications to Markov kernels*, Ann. Math. Statist.**41**(1970), 1631–1639. MR**0272057**, https://doi.org/10.1214/aoms/1177696806**[11]**William A. Veech,*A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem*, Ann. of Math. (2)**97**(1973), 189–216. MR**0310269**, https://doi.org/10.2307/1970845**[12]**William A. Veech,*A converse to the mean value theorem for harmonic functions*, Amer. J. Math.**97**(1975), no. 4, 1007–1027. MR**0393521**, https://doi.org/10.2307/2373685**[13]**-,*The core of a measurable set and a problem in potential theory*(preprint).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60J05,
31B05,
60J65

Retrieve articles in all journals with MSC: 60J05, 31B05, 60J65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0511416-X

Keywords:
Restricted mean value,
invariant function,
Brownian motion

Article copyright:
© Copyright 1978
American Mathematical Society