Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Measurable parametrizations and selections


Authors: Douglas Cenzer and R. Daniel Mauldin
Journal: Trans. Amer. Math. Soc. 245 (1978), 399-408
MSC: Primary 28A20; Secondary 04A15, 54H05
DOI: https://doi.org/10.1090/S0002-9947-1978-0511418-3
MathSciNet review: 511418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let W be a Borel subset of $ I \times I$ (where $ I = [0,1]$) such that, for each x, $ {W_x} = \{ y:\,(x,y) \in W\} $ is uncountable. It is shown that there is a map, g, of $ I \times I$ onto W such that (1) for each x, $ g(x, \cdot )$ is a Borel isomorphism of I onto $ {W_x}$ and (2) both g and $ {g^{ - 1}}$ are $ S(I \times I)$-measurable maps. Here, if X is a topological space, $ S(X)$ is the smallest family containing the open subsets of X which is closed under operation (A) and complementation. Notice that $ S(X)$ is a subfamily of the universally or absolutely measurable subsets of X. This result answers a problem of A. H. Stone.

This result improves a theorem of Wesley and as a corollary a selection theorem is obtained which extends the measurable selection theorem of von Neumann.

We also show an analogous result holds if W is only assumed to be analytic.


References [Enhancements On Off] (What's this?)

  • [1] D. Cenzer and R. D. Mauldin, Inductive definability, measure and category (to appear). MR 594994 (82b:03086)
  • [2] J. R. Choksi, Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184 (1973), 101-124. MR 0338311 (49:3076)
  • [3] F. Hausdorff, Set theory, Chelsea, New York, 1964.
  • [4] K. Kunugui, Sur un théorème d'existence dans la théorie des ensembles projectifs, Fund. Math. 29 (1937), 169-181.
  • [5] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [6] R. D. Mauldin, Borel parameterizations (preprint).
  • [7] J. von Neumann, On rings of operators; reduction theory, Ann. of Math. 30 (1949), 401-485. MR 0029101 (10:548a)
  • [8] P. S. Novikov, Sur les projections de certains ensembles mesurables B, Dokl. Akad. Nauk. SSSR (N.S.) 23 (1939), 864-865.
  • [9] G. E. Sacks, Measure-theoretic uniformity, Trans. Amer. Math. Soc. 142 (1969), 381-420. MR 0253895 (40:7108)
  • [10] A. H. Stone, Measure theory, Lecture Notes in Math., vol. 541, Springer-Verlag, Berlin and New York, 1976, pp. 43-48. MR 0450492 (56:8786)
  • [11] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization 15 (1977), 859-903. MR 0486391 (58:6137)
  • [12] E. Wesley, Extensions of the measurable choice theorem by means of forcing, Israel J. Math. 14 (1973), 104-114. MR 0322129 (48:493)
  • [13] -, Borel preference orders in markets with a continuum of traders, J. Math. Econom. 3 (1976), 155-165. MR 0439054 (55:11955)
  • [14] -, On the existence of absolutely measurable selection functions (preprint).
  • [15] W. Yankov, Sur l'uniformisation des ensembles A, Dokl. Akad. Nauk SSSR (N.S.) 30 (1941), 597-598.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A20, 04A15, 54H05

Retrieve articles in all journals with MSC: 28A20, 04A15, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0511418-3
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society