Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I


Author: Gary Weiss
Journal: Trans. Amer. Math. Soc. 246 (1978), 193-209
MSC: Primary 47B15; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9947-1978-0515536-5
MathSciNet review: 515536
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following statements about bounded linear operators on a separable, complex Hilbert space: (1) Every normal operator N that is similar to a Hilbert-Schmidt perturbation of a diagonal operator D is unitarily equivalent to a Hilbert-Schmidt perturbation of D; (2) For every normal operator N, diagonal operator D and bounded operator X, the Hilbert-Schmidt norms (finite or infinite) of $ NX\, - \,XD$ and $ {N^{\ast}}X\, - \,X{D^{\ast}}$ are equal; (3) If $ NX\, - \,XN$ and $ {N^{\ast}}X\, - \,X{N^{\ast}}$ are Hilbert-Schmidt operators, then their Hilbert-Schmidt norms are equal; (4) If X is a Hilbert-Schmidt operator and N is a normal operator so that $ NX\, - \,XN$ is a trace class operator, then Trace $ \left( {NX\, - \,XN} \right)\, = \,0$; (5) For every normal operator N that is a Hilbert-Schmidt perturbation of a diagonal operator, and every bounded operator X, the Hilbert-Schmidt norms (finite or infinite) of $ NX\, - \,XN$ and $ {N^{\ast}}X\, - \,X{N^{\ast}}$ are equal. The main technique employs the use of a new concept which we call 'generating functions for matrices'.


References [Enhancements On Off] (What's this?)

  • [1] I. D. Berg, An extension of the Weyl-von Neumann Theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365-371. MR 0283610 (44:840)
  • [2] C. A. Berger and B. I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193-1199. MR 0374972 (51:11168)
  • [3] L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $ {C^{\ast}}$-algebras, Lecture Notes in Math., no. 345, Springer-Verlag, Berlin and New York, 1973, pp. 58-128. MR 0380478 (52:1378)
  • [4] R. W. Carey and J. D. Pincus, Perturbation by trace class operators, Bull. Amer. Math. Soc. 80 (1974), 758-759. MR 0344919 (49:9658)
  • [5] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR 0246142 (39:7447)
  • [6] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950, pp. 171-174. MR 0033869 (11:504d)
  • [7] J. W. Helton and R. E. Howe, Integral operators: commutators, traces, index and homology, Lecture Notes in Math., no. 345, Springer-Verlag, Berlin and New York, 1973, pp. 141-209. MR 0390829 (52:11652)
  • [8] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actualités Sci. Indust., no. 229, Hermann, Paris, 1935.
  • [9] Gary Weiss, Commutators and operator ideals, Dissertation, Univ. of Michigan, Ann Arbor, Mich., 1975.
  • [10] -, Fuglede's commutativity theorem modulo operator ideals (preprint).
  • [11] H. Weyl, Über beschrankte quadratischen Formen deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B15, 47B10

Retrieve articles in all journals with MSC: 47B15, 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1978-0515536-5
Keywords: Fuglede's Theorem, commutators, normal operators, perturbations, Hilbert Schmidt operators, trace class, trace, generating functions for matrices, Laurent matrices, normal derivations
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society