Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Control problems governed by a pseudo-parabolic partial differential equation

Author: Luther W. White
Journal: Trans. Amer. Math. Soc. 250 (1979), 235-246
MSC: Primary 49B22; Secondary 49A22
MathSciNet review: 530053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a bounded domain in $ {R^n}$ and $ Q\, = \,G\, \times \,\left( {0,\,T} \right)$. We consider the solution $ y\left( u \right)$ of the pseudo-parabolic initial-value problem

\begin{multline}\left( {1\, + \,M\left( x \right)} \right)\,{y_t}\,\left( u \rig... ... \right)\, = \,0\,{\text{in}}\,{L^2}\,\left( G \right), \hfill \\ \end{multline}

, to be the state corresponding to the control u. Here $ M\left( x \right)$ and $ L\left( x \right)$ are symmetric uniformly strongly elliptic second-order partial differential operators. The control problem is to find a control $ {u_0}$ in a fixed ball in $ {L^2}\left( Q \right)$ such that (i) the endpoint of the corresponding state $ y\left( { \cdot ,\,T;\,{u_0}} \right)$ lies in a given neighborhood of a target Z in $ {L^2}\left( G \right)$ and (ii) $ {u_0}$ minimizes a certain energy functional. In this paper we establish results concerning the controllability of the states and the compatibility of the constraints, existence and uniqueness of the optimal control, existence and properties of Lagrange multipliers associated with the constraints, and regularity properties of the optimal control.

References [Enhancements On Off] (What's this?)

  • [1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0178246
  • [2] A. G. Butkovskiy, Distributed control systems, Translated from the Russian by Scripta Technica, Inc. Translation Editor: George M. Kranc. Modern Analytic and Computational Methods in Science and Mathematics, No. 11, American Elsevier Publishing Co., Inc., New York, 1969. MR 0253766
  • [3] Robert Wayne Carroll and Ralph E. Showalter, Singular and degenerate Cauchy problems, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Mathematics in Science and Engineering, Vol. 127. MR 0460842
  • [4] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [5] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
  • [6] J.-L. Lions, Optimal control of systems governed by partial differential equations., Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. MR 0271512
  • [7] David G. Luenberger, Optimization by vector space methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238472
  • [8] R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876
  • [9] D. L. Russell, Controllability and stability theory for linear partial differential equations: Recent progress and open questions, MRC Technical Summary Report #1700, Mathematics Research Center, Madison, Wisconsin, 1976.
  • [10] R. E. Showalter and T. W. Ting, Pseudo-parabolic partial differential equations, SIAM J. Math. Anal. 1 (1970), 1-26.
  • [11] François Trèves, Basic linear partial differential equations, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 62. MR 0447753
  • [12] L. W. White, Control problems governed by pseudo-parabolic partial differential equations, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1977.
  • [13] Kôsaku Yosida, Functional analysis, 4th ed., Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123. MR 0350358

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49B22, 49A22

Retrieve articles in all journals with MSC: 49B22, 49A22

Additional Information

Keywords: Pseudo-parabolic equation, optimal control, Lagrange multiplier, controllability, Lagrangian, regularity, target set
Article copyright: © Copyright 1979 American Mathematical Society