Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Projective geometries as projective modular lattices


Author: Ralph Freese
Journal: Trans. Amer. Math. Soc. 251 (1979), 329-342
MSC: Primary 06C10; Secondary 05B25
DOI: https://doi.org/10.1090/S0002-9947-1979-0531987-8
MathSciNet review: 531987
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the lattice of subspaces of a finite dimensional vector space over a finite prime field is projective in the class of modular lattices provided the dimension is at least 4.


References [Enhancements On Off] (What's this?)

  • [1] P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N. J., 1973.
  • [2] A. Day, Splitting algebras and a weak notion of projectivity, Algebra Universalis 5 (1975), 153-162. MR 0389715 (52:10546)
  • [3] R. Freese, Planar sublattices of FM(4), Algebra Universalis 6 (1976), 69-72. MR 0398927 (53:2778)
  • [4] -, The variety of modular lattices is not generated by its finite members, Trans. Amer. Math. Soc. (to appear). MR 542881 (81g:06003)
  • [5] R. Freese and B. Jónsson, Congruence modularity implies the Arguesian identity, Algebra Universalis 6 (1976), 225-228. MR 0472644 (57:12340)
  • [6] M. Hall and R. P. Dilworth, The imbedding problem for modular lattices, Ann. of Math. 45 (1944), 450-456. MR 0010541 (6:33c)
  • [7] I. Halperin, Appendix to [14].
  • [8] C. Herrmann, On the equational theory of submodule lattices, Proc. Univ. Houston Lattice Theory Conference, (Houston, Tex., 1973), Dept. of Math., Univ. Houston, Houston, Tex., 1973, pp. 105-118. MR 0406882 (53:10668)
  • [9] C. Herrmann and A. Huhn, Lattices of normal subgroups which are generated by frames, Lattice Theory, Colloq. Math. Soc. János Bolyai, vol. 14, North-Holland, Amsterdam, 1976, pp. 97-136. MR 0447064 (56:5379)
  • [10] A. Huhn, Schwach distributive Verbände. I, Acta Sci. Math. (Szeged) 33 (1972), 297-305. MR 0337710 (49:2479)
  • [11] -, On G. Grätzer's problem concerning automorphisms of a finitely presented lattice, Algebra Universalis 5 (1975), 65-71. MR 0392713 (52:13530)
  • [12] F. Maeda, Kontinuierlishe Geometrien, Springer-Verlag, Berlin, 1958. MR 0090579 (19:833c)
  • [13] R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43. MR 0313141 (47:1696)
  • [14] J. von Neumann, Continuous geometry, Princeton University Press, Princeton, N. J., 1960. MR 0120174 (22:10931)
  • [15] R. Wille, Aktuelle Probleme der Verbandstheorie, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06C10, 05B25

Retrieve articles in all journals with MSC: 06C10, 05B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0531987-8
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society