Structural stability and hyperbolic attractors

Author:
Artur Oscar Lopes

Journal:
Trans. Amer. Math. Soc. **252** (1979), 205-219

MSC:
Primary 58F10; Secondary 34D30, 58F12

MathSciNet review:
534118

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary condition for structural stability is presented that in the two dimensional case means that the system has a finite number of topological attractors.

**[1]**Morris W. Hirsch and Charles C. Pugh,*Stable manifolds and hyperbolic sets*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR**0271991****[2]**J. Palis and S. Smale,*Structural stability theorems*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR**0267603****[3]**Ricardo Mañé,*Expansive diffeomorphisms*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 162–174. Lecture Notes in Math., Vol. 468. MR**0650658****[4]**Ricardo Mañé,*Contributions to the stability conjecture*, Topology**17**(1978), no. 4, 383–396. MR**516217**, 10.1016/0040-9383(78)90005-8**[5]**V. A. Pliss,*A hypothesis due to Smale*, Differential Equations**8**(1972), 203-214.**[6]**-,*The location of separatrices of periodic saddle-point motion of second order differential equations*, Differential Equations**7**(1971), 906-927.**[7]**Charles C. Pugh,*The closing lemma*, Amer. J. Math.**89**(1967), 956–1009. MR**0226669****[8]**J. W. Robbin,*A structural stability theorem*, Ann. of Math. (2)**94**(1971), 447–493. MR**0287580****[9]**R. Clark Robinson,*Structural stability of 𝐶¹ flows*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 262–277. Lecture Notes in Math., Vol. 468. MR**0650640****[10]**-,*Structural stability of**diffeomorphisms*, J. Differential Equations**22**(1976), 28-73.**[11]**S. Smale,*Differential dynamical systems*, Bull. Amer. Math. Soc.**73**(1976), 747-817.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F10,
34D30,
58F12

Retrieve articles in all journals with MSC: 58F10, 34D30, 58F12

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0534118-3

Keywords:
Structural stability,
Axiom A,
hyperbolic set,
attractor,
stable manifold

Article copyright:
© Copyright 1979
American Mathematical Society