Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Expanding maps on sets which are almost invariant. Decay and chaos


Authors: Giulio Pianigiani and James A. Yorke
Journal: Trans. Amer. Math. Soc. 252 (1979), 351-366
MSC: Primary 58F11; Secondary 28D15, 34C35, 58F12
DOI: https://doi.org/10.1090/S0002-9947-1979-0534126-2
MathSciNet review: 534126
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A\, \subset \,{R^n}$ be a bounded open set with finitely many connected components $ {A_j}$ and let $ T:\,\overline A \to \,{R^n}$ be a smooth map with $ A\,\, \subset \,\,T\left( A \right)$. Assume that for each $ {A_j}$, $ A\,\, \subset \,\,{T^m}\left( {{A_j}} \right)$ for all m sufficiently large. We assume that T is ``expansive", but we do not assume that $ T\left( A \right) = A$. Hence for $ x\, \in \,A,\,{T^i}\,\left( x \right)$ may escape A as i increases. Let $ {\mu _0}$ be a smooth measure on A (with $ {\operatorname{inf} _A}\,{{d{\mu _0}} \mathord{\left/ {\vphantom {{d{\mu _0}} {dx}}} \right. \kern-\nulldelimiterspace} {dx}}\, > \,0$) and let $ x\, \in \,A$ be chosen at random (using $ {\mu _0}$). Since T is ``expansive'' we may expect $ {T^i}\left( x \right)\,$ to oscillate chaotically on A for a certain time and eventually escape A. For each measurable set $ E\, \subset \,A$ define $ {\mu _m}\left( E \right)$ to be the conditional probability that $ {T^m}\left( x \right) \in \,E$ given that $ x,T\left( x \right),\ldots,{T^m}\left( x \right)$ are in A. We show that $ {\mu _m}$ converges to a smooth measure $ \mu $ which is independent of the choice of $ {\mu _0}$. One dimensional examples are stressed.


References [Enhancements On Off] (What's this?)

  • [1] J. Kaplan and J. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz (preprint). MR 539545 (80f:58028)
  • [2] A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. MR 49 #538. MR 0335758 (49:538)
  • [3] T. Y. Li and J. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183-192. MR 0457679 (56:15883)
  • [4] E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
  • [5] G. Pianigiani, Existence of invariant measures for piecewise continuous transformations, Ann. Polon. Math. (to appear). MR 645796 (83g:28034)
  • [6] K. Robbins, A new approach to subcritical instability and turbulent transitions in a simple dynamo, Math. Proc. Cambridge Philos. Soc. 82 (1977), 309-325. MR 0462177 (57:2152)
  • [7] S. Smale and R. W. Williams, The qualitative analysis of a difference equation of population growth, J. Math. Biol. 3 (1976), 1-5. MR 0414147 (54:2251)
  • [8] J. Yorke and E. Yorke, Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model (preprint).
  • [9] A. A. Kosjakin and E. A. Sandler, Ergodic properties of a certain class of piecewise smooth transformations of a segment, Izv. Vysš. Učebn. Zaved. Matematika 118 (1972), 32-40. MR 0299754 (45:8802)
  • [10] A. Avez, Propriétés ergodiques des endomorphismes dilatants des variétés compactes, C. R. Acad. Sci. Paris Sér A-B 266 (1968), A610-A612. MR 37 #6944. MR 0231389 (37:6944)
  • [11] K. Krzyzewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. MR 39 #7067. MR 0245761 (39:7067)
  • [12] M. S. Waterman, Some ergodic properties of multidimensional F-expansions, Z. Wahrschein-lichkeitstheorie und Verw. Gebiete 16 (1970), 77-103. MR 44 #173. MR 0282939 (44:173)
  • [13] S. Wong, Some metric properties of piecewise monotonie mappings of the unit interval (preprint). MR 515555 (80c:28014)
  • [14] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202. MR 0380889 (52:1786)
  • [15] R. Bowen, Some systems with unique equilibrium states, Math. Systems Theory 8 (1974), 193-202. MR 0399413 (53:3257)
  • [16] -, Equilibrium states and the theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin and New York, 1975.
  • [17] E. Franco-Sanchez, Flow with unique equilibrium states, Amer. J. Math. 99 (1977), 486-514. MR 0442193 (56:579)
  • [18] T. Y. Li and J. A. Yorke, Ergodic maps on $ [{0,\,1}]$ and pseudo random number generators, Nonlinear Analysis 2 (1978), 473-481. MR 512484 (80m:58024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F11, 28D15, 34C35, 58F12

Retrieve articles in all journals with MSC: 58F11, 28D15, 34C35, 58F12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0534126-2
Keywords: Frobenius-Perron operator, invariant measures, expanding maps, chaos
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society