Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the global asymptotic behavior of Brownian local time on the circle


Author: E. Bolthausen
Journal: Trans. Amer. Math. Soc. 253 (1979), 317-328
MSC: Primary 60F05; Secondary 60J55
MathSciNet review: 536950
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior of the local time of Brownian motion on the circle is investigated. For fixed time point t this is a (random) continuous function on $ {S^1}$. It is shown that after appropriate norming the distribution of this random element in $ C({S^1})$ converges weakly as $ t\, \to \,\infty $. The limit is identified as $ 2(B(x)\, - \,\int {B(y)\,dy)} $ where B is the Brownian bridge. The result is applied to obtain the asymptotic distribution of a Cramer-von Mises type statistic for the global deviation of the local time from the constant t on $ {S^1}$.


References [Enhancements On Off] (What's this?)

  • [1] J. R. Baxter and G. A. Brosamler, Energy and the law of the iterated logarithm, Math. Scand. 38 (1976), no. 1, 115–136. MR 0426178
  • [2] Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
  • [3] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
  • [4] G. A. Brosamler, A probabilistic solution of the Neumann problem, Math. Scand. 38 (1976), no. 1, 137–147. MR 0408009
  • [5] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. I. II, Comm. Pure Appl. Math. 28 (1975), 1–47; ibid. 28 (1975), 279–301. MR 0386024
  • [6] Avner Friedman, Stochastic differential equations and applications. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Probability and Mathematical Statistics, Vol. 28. MR 0494490
  • [7] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, 2nd ed., Springer-Verlag, New York-Heidelberg-Berlin, 1976. With a chapter on Markov random fields, by David Griffeath; Graduate Texts in Mathematics, No. 40. MR 0407981
  • [8] H. P. McKean, Brownian local times, Topics in Probability Theory, D. W. Stroock and S. R. S. Vardahan (editors), Courant Inst. Math. Sci., New York Univ., New York, 1973, pp. 59-92.
  • [9] H. P. McKean Jr., Stochastic integrals, Probability and Mathematical Statistics, No. 5, Academic Press, New York-London, 1969. MR 0247684
  • [10] A. Rényi, On the central limit theorem for the sum of a random number of independent random variables, Acta Math. Acad. Sci. Hungar. 11 (1960), 97–102 (unbound insert) (English, with Russian summary). MR 0115204
  • [11] Hiroshi Tanaka, Certain limit theorems concerning one-dimensional diffusion processes., Mem. Fac. Sci. Kyusyu Univ. Ser. A. Math. 12 (1958), 1–11. MR 0097129

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60F05, 60J55

Retrieve articles in all journals with MSC: 60F05, 60J55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1979-0536950-9
Keywords: Brownian motion on the circle, local time, weak convergence
Article copyright: © Copyright 1979 American Mathematical Society