Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The atomic decomposition for parabolic $ H\sp{p}$ spaces


Authors: Robert H. Latter and Akihito Uchiyama
Journal: Trans. Amer. Math. Soc. 253 (1979), 391-398
MSC: Primary 30D55; Secondary 46J15
DOI: https://doi.org/10.1090/S0002-9947-1979-0536954-6
MathSciNet review: 536954
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theorem of A. P. Calderón giving the atomic decomposition for certain parabolic $ {H^p}$ spaces is extended to all such spaces. The proof given also applies to Hardy spaces defined on the Heisenberg group.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderón, An atomic decomposition of distributions in parabolic $ {H^p}$ spaces, Advances in Math. 25 (1977), 216-225. MR 0448066 (56:6376)
  • [2] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-63. MR 0417687 (54:5736)
  • [3] -, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), 101-171. MR 0450888 (56:9180)
  • [4] R. R. Coifman, A real variable characterization of $ {H^p}$, Studia Math. 51 (1974), 269-274. MR 0358318 (50:10784)
  • [5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [6] C. Fefferman, N. M. Riviere and Y. Sahger, Interpolation between $ {H^p}$ spaces, the real method, Trans. Amer. Math. Soc. 191 (1974), 75-82. MR 0388072 (52:8909)
  • [7] J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845. MR 518108 (80j:32011)
  • [8] D. Geller, Fourier analysis on the Heisenberg group. I, Schwartz space (to appear). MR 569254 (81g:43008)
  • [9] S. G. Krantz, Generalized function spaces of Campanato type (to appear).
  • [10] A. Koranyi, Harmonic functions in Hermitian hyperbolic space, Trans. Amer. Math. Soc. 139 (1969), 507-516. MR 0277747 (43:3480)
  • [11] A. Koranyi and S. Vagi, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1971), 575-648. MR 0463513 (57:3462)
  • [12] R. H. Latter, A decomposition of $ {H^p}({\textbf{R}^n})$ in terms of atoms, Studia Math. 62 (1977), 92-101. MR 0482111 (58:2198)
  • [13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D55, 46J15

Retrieve articles in all journals with MSC: 30D55, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0536954-6
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society