Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Twisted sums of sequence spaces and the three space problem

Authors: N. J. Kalton and N. T. Peck
Journal: Trans. Amer. Math. Soc. 255 (1979), 1-30
MSC: Primary 46A45
MathSciNet review: 542869
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the following problem: given a complete locally bounded sequence space Y, construct a locally bounded space Z with a subspace X such that both X and $ Z/X$ are isomorphic to Y, and such that X is uncomplemented in Z. We give a method for constructing Z under quite general conditions on Y, and we investigate some of the properties of Z.

In particular, when Y is $ {l_p}\,(1\, < \,p\, < \,\infty )$, we identify the dual space of Z, we study the structure of basic sequences in Z, and we study the endomorphisms of Z and the projections of Z on infinite-dimensional subspaces.

References [Enhancements On Off] (What's this?)

  • [1] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588-594. MR 0014182 (7:250d)
  • [2] P. Enflo, J. Lindenstrauss, and G. Pisier, On the ``three-space problem", Math. Scand. 36 (1975), 199-210. MR 0383047 (52:3928)
  • [2a] T. Figiel, J. Lindenstrauss, and V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. MR 0445274 (56:3618)
  • [3] M. I. Kadec and A. Pełcyzński, Bases, lacunary series and complemented subspaces in the spaces $ {L_p}$, Studia Math. 21 (1962), 161-176.
  • [4] N. J. Kalton, The three-space problem for locally bounded F-spaces, Compositio Math. 37 (1978), 243-276. MR 511744 (80j:46005)
  • [5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Vol. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin, 1977. MR 0415253 (54:3344)
  • [6] A. Pełczyński and H. P. Rosenthal, Localization techniques in $ {L^p}$ spaces, Studia Math. 52 (1975), 263-289.
  • [7] M. Ribe, Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 73 (1979), 351-355. MR 518518 (81a:46010)
  • [8] J. W. Roberts, A non locally convex F-space with the Hahn-Banach approximation property, Proc. Kent State Conference, Lecture Notes in Math., vol. 604, Springer-Verlag, Berlin and New York, 1977. MR 0625305 (58:30008)
  • [9] S. Rolewicz, On certain classes of linear metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 5 (1957), 471-473. MR 0088682 (19:562d)
  • [10] H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 14-36. MR 0270122 (42:5015)
  • [11] -, On subspaces of $ {L^p}$, Ann. of Math. 97 (1973), 344-373.
  • [12] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976). MR 0423044 (54:11028)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A45

Retrieve articles in all journals with MSC: 46A45

Additional Information

Keywords: Locally bounded space, Banach space, sequence space, uncomplemented subspace, three space problem, projection, strictly singular (co-singular) operator
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society