Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Harmonically induced representations on nilpotent Lie groups and automorphic forms on nilmanifolds


Author: Richard C. Penney
Journal: Trans. Amer. Math. Soc. 260 (1980), 123-145
MSC: Primary 22E27; Secondary 14K25, 43A85
DOI: https://doi.org/10.1090/S0002-9947-1980-0570782-9
MathSciNet review: 570782
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the irreducible ``discrete series'' representations of certain nilpotent Lie groups may be realized in square integrable $ \bar \partial $ cohomology spaces. This theory is applied to obtain a concept of automorphic forms on nilmanifolds which generalizes the niltheta functions of Cartier and Auslander-Tolimieri. We also use the automorphic cohomology to solve certain holomorphic difference equations on $ {{\textbf{C}}^n}$.


References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and R. Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Math., vol. 436, Springer-Verlag, Berlin and New York, 1975. MR 0414785 (54:2877)
  • [2] R. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98. MR 0125456 (23:A2757)
  • [3] J. Camora, Représentations du groupe de Heisenberg dans les espaces de (0, q) formes, Math. Ann. 205 (1973), 89-112. MR 0342643 (49:7389)
  • [4] P. Cartier, Quantum mechanical commutation relations and theta functions, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, pp. 361-383. MR 0216825 (35:7654)
  • [5] L. Corwin, F. Greenleaf and R. C. Penney, A general character formula for irreducible projections on $ {L^2}$ of a nilmanifold, Math. Ann. 225 (1977), 21-32. MR 0425021 (54:12979)
  • [6] R. Goodman, One parameter groups generated by operators in an enveloping algebra, J. Functional Analysis 6 (1970), 218. MR 0268330 (42:3229)
  • [7] H. Grauert, Several complex variables, Springer-Verlag, Berlin and New York, 1976. MR 0414912 (54:3004)
  • [8] G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. 57 (1953), 591-603. MR 0054581 (14:943c)
  • [9] L. Hormander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568. MR 0124734 (23:A2044)
  • [10] R. Howe, On Frobenius reciprocity for unipotent algebraic groups over Q, Amer. J. Math. 43 (1971), 163-172. MR 0281842 (43:7556)
  • [11] -, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math. 73 (1977), 329-364. MR 0578891 (58:28270)
  • [12] A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53-104. MR 0142001 (25:5396)
  • [13] C. Moore and J. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445-462. MR 0338267 (49:3033)
  • [14] H. Moscovici and A. Verona, Harmonically induced representations of nilpotent Lie groups, Invent. Math. 48 (1978), 61-73. MR 508089 (80a:22011)
  • [15] H. Moscovici, A vanishing theorem for $ {L^2}$-cohomology in the nilpotent case, (Conference on Non-Commutative Harmonic Analysis, Marseille-Luming, June, 1978), Lecture Notes in Math., vol. 728, Springer, Berlin and New York, 1979. MR 548331 (81c:22018)
  • [16] E. Nilson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. MR 0107176 (21:5901)
  • [17] R. Penney, The structure of ad-associative Lie algebras, Pacific J. Math. (submitted).
  • [18] -, A Fourier transform theorem for nilmanifolds and nil-theta functions, Pacific J. Math. (submitted).
  • [19] N. S. Poulsen, On C-vectors and intertwining bilinear forms for representations of Lie groups, J. Functional Analysis 9 (1972), 87-120. MR 0310137 (46:9239)
  • [20] L. Richardson, Decomposition of the $ {L^2}$-space of a general compact nilmanifold, Amer. J. Math. 43 (1971), 173-190. MR 0284546 (44:1771)
  • [21] I. Satake, Unitary representations of semi-direct product of Lie groups on $ \bar \partial $-cohomology spaces, Math. Ann. 190 (1971), 177-202. MR 0296213 (45:5274)
  • [22] W. Schmid, $ {L^2}$ cohomology and the discrete series, Ann. of Math. (2) 103 (1976), 375-394. MR 0396856 (53:716)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E27, 14K25, 43A85

Retrieve articles in all journals with MSC: 22E27, 14K25, 43A85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0570782-9
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society