Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Derivations on algebras of unbounded operators


Authors: Atsushi Inoue and Shôichi Ota
Journal: Trans. Amer. Math. Soc. 261 (1980), 567-577
MSC: Primary 46L99; Secondary 46K10, 47D40
DOI: https://doi.org/10.1090/S0002-9947-1980-0580903-X
MathSciNet review: 580903
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is a study of derivations on unbounded operator algebras in connection with those in operator algebras.

In particular we study spatiality of derivations in several situations. We give the characterization of derivations on general *-algebras by using positive linear functionals. We also show that a derivation with some range-property on a left $ E{W^\char93 }$-algebra induced by an unbounded Hilbert algebra is strongly implemented by an operator which belongs to an algebra of measurable operators.


References [Enhancements On Off] (What's this?)

  • [1] D. Arnal and J. P. Jurzak, Topological aspects of algebras of unbounded operators, J. Funct. Anal. 24 (1977), 397-425. MR 0435874 (55:8825)
  • [2] O. Bratteli and D. W. Robinson, Unbounded derivations of $ {C^{\ast}}$-algebras, Comm. Math. Phys. 42 (1975), 253-268. MR 0377526 (51:13698)
  • [3] -, Unbounded derivations of $ {C^{\ast}}$-algebras. II, Comm. Math. Phys. 46 (1976), 11-30. MR 0390785 (52:11608)
  • [4] -, Unbounded derivations of von Neumann algebras, Ann. Inst. H. Poincaré Sect. A 25 (1976), 139-164. MR 0425632 (54:13586)
  • [5] O. Bratteli, Unbounded derivations of operator algebras, (CNRS Colloquium on Algebras of Operators and their Applications to Mathematical Physics, Marseille, 25-29 June 1977). MR 560627 (81h:46087)
  • [6] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertian, $ {2^{e'}}$ ed., Gauthier-Villars, Paris, 1969.
  • [7] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. MR 0350442 (50:2934)
  • [8] P. G. Dixon, Unbounded operator algebras, Proc. London Math. Soc. 23 (1971), 53-69. MR 0291821 (45:911)
  • [9] A. Inoue, On a class of unbounded operator algebras. II, Pacific J. Math. 66 (1976), 411-431. MR 0512383 (58:23641b)
  • [10] -, Unbounded generalizations of standard von Neumann algebras, Rep. Math. Phys. 13 (1978), 25-35. MR 0482270 (58:2346)
  • [11] A. Inoue, K. Kuriyama and S. Ôta, Topologies on unbounded operator algebras, Mem. Fac. Sci. Kyushu Univ. Ser A 33 (1979), 355-375. MR 548563 (81i:47047)
  • [12] P. Kröger, Derivationen in $ {L^ + }(D)$, Beiträge zur Theorie nichtnormierbarer topologischer Algebren. Wiss. 2, Karl Marx Univ. Leipzig Math.-Natur. Reihe 24 (1975), No. 5, 525-528. MR 0428062 (55:1091)
  • [13] G. Lassner, Topological algebras of operators, Rep. Math. Phys. 3 (1972), 279-293. MR 0322527 (48:889)
  • [14] I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. Math. Soc. 73 (1967), 443-445. MR 0209904 (35:799)
  • [15] R. T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85-124. MR 0283580 (44:811)
  • [16] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. 5 (1972), 432-438. MR 0374927 (51:11123)
  • [17] C. Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist and Probability (Berkeley, Calif., 1965-1966), vol. II: Contributions to Probability Theory, Part I, Univ. California Press, Berkeley, Calif., 1967, pp. 55-61. MR 0215134 (35:5977)
  • [18] S. Sakai, Derivations of $ {W^{\ast}}$-algebras, Ann. of Math. (2) 83 (1966), 273-279. MR 0193528 (33:1748)
  • [19] -, $ {C^{\ast}}$-algebras and $ {W^{\ast}}$-algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
  • [20] -, Recent developments in the theory of unbounded derivations in $ {C^{\ast}}$-algebras, (Proceeding, Second Japan-USA Seminar, Los Angeles, April 18-22, 1977), Lecture Notes in Math., vol. 650, Springer-Verlag, Berlin and New York, 1978.
  • [21] I. E. Segal, A noncommutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457. MR 0054864 (14:991f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L99, 46K10, 47D40

Retrieve articles in all journals with MSC: 46L99, 46K10, 47D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0580903-X
Keywords: Unbounded operator algebra, derivation
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society