Stability of the null solution of parabolic functional inequalities
Authors:
Ray Redheffer and Wolfgang Walter
Journal:
Trans. Amer. Math. Soc. 262 (1980), 285302
MSC:
Primary 35R10; Secondary 35K60
MathSciNet review:
583856
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Uniqueness and stability theorems are established for coupled systems of parabolic differential equations which may involve a Volterratype dependence on the past history of the process. We allow retarded or deviating arguments, convolutiontype memory terms, and strong coupling. (This means that all the space derivatives up to a given order can occur in all the equations.) Our results for strong coupling depend on the concept of ``admissible monomial'' which is here introduced for the first time and has no counterpart in the linear case. It is possible for uniqueness to fail in general, but to be restored (relative to a tolerably large class of functions of ) if a single solution independent of x exists. Another curious feature of these theorems, depending again on the concept of admissible monomial, is that conditions for uniqueness can involve derivatives of order much higher than those occurring in the equation. Examples given elsewhere show that the results are, in various respects, sharp. Thus, the seemingly peculiar hypotheses do not arise from deficient technique, but from the actual behavior of strongly coupled systems. The paper concludes with a new method of dealing with unbounded regions for the difficult case in which the functional occurs in the boundary operator as well as in the differential equation.
 [1]
A.
Kolmogoroff, On inequalities between upper bounds of consecutive
derivatives of an arbitrary function defined on an infinite interval,
Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939),
3–16 (Russian, with English summary). MR 0001787
(1,298c)
 [2]
Karl Nickel, The Croccotransformation for the threedimensional Prandtl boundary layer equations, MRC Report 1594, University of Wisconsin, 1975.
 [3]
, Error bounds and uniqueness for the solutions of nonlinear strongly coupled parabolic systems of differential equations, MRC Report 1596, University of Wisconsin, 1975.
 [4]
, Fehlerschranken und Eindeutigkeitsaussagan für die Lösungen nichtlinearer, stark gekoppelter parabolischer Differentialgleichungen. Math. Z. 152 (1976), 3345.
 [5]
Karl
Nickel, New results on strongly coupled systems of parabolic
differential equations, Ordinary and partial differential equations
(Proc. Fourth Conf., Univ. Dundee, Dundee, 1976) Springer, Berlin, 1976,
pp. 350–364. Lecture Notes in Math., Vol. 564. MR 0605666
(58 #29279)
 [6]
, The lemma of Max MüllerNagumoWestphal for strongly coupled systems of parabolic functional differential equations, MRC Report 1800, 1977. (German transl, available from the University of Freiburg.)
 [7]
Raymond
M. Redheffer, Die Collatzsche Monotonie bei
Anfangswertproblemen, Arch. Rational Mech. Anal. 14
(1963), 196–212 (German). MR 0157102
(28 #342)
 [8]
Ray
Redheffer and Wolfgang
Walter, Existence theorems for strongly
coupled systems of partial differential equations over Bernstein
classes, Bull. Amer. Math. Soc.
82 (1976), no. 6,
899–902. MR 0457925
(56 #16129), http://dx.doi.org/10.1090/S000299041976142024
 [9]
R. M. Redheffer, Uniqueness, stability and error estimation for parabolic functionaldifferential equations, Ber. 9, Univ. Karlsruhe (1976). Accepted by the Soviet Academy of Sciences in October, 1976 for the Jubilee Volume dedicated to the 70th anniversary of Academician I. N. Vekua.
 [10]
Ray
Redheffer and Wolfgang
Walter, Das Maximumprinzip in unbeschränkten Gebieten für
parabolische Ungleichungen mit Funktionalen, Math. Ann.
226 (1977), no. 2, 155–170 (German). MR 0450786
(56 #9079)
 [11]
Ray
Redheffer and Wolfgang
Walter, Inequalities involving derivatives, Pacific J. Math.
85 (1979), no. 1, 165–178. MR 571634
(81f:26012)
 [12]
Raymond
Redheffer and Wolfgang
Walter, Comparison theorems for parabolic functional
inequalities, Pacific J. Math. 85 (1979), no. 2,
447–470. MR
574929 (81i:35164)
 [13]
, Nonuniqueness of the null solution for strongly coupled systems of parabolic differential equations, Math. Z. 171 (1980), 8390.
 [14]
Jacek
Szarski, Differential inequalities, Monografie Matematyczne,
Tom 43, Państwowe Wydawnictwo Naukowe, Warsaw, 1965. MR 0190409
(32 #7822)
 [15]
Wolfgang
Walter, Differential and integral inequalities, Translated
from the German by Lisa Rosenblatt and Lawrence Shampine. Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 55, SpringerVerlag, New
YorkBerlin, 1970. MR 0271508
(42 #6391)
 [1]
 A. Kolmogoroff, On inequalities between upper bounds of consecutive derivatives of an arbitrary function defined on an infinite interval, Učen. Zap. Moskov. Gos. Univ. Mat. 30 (1939), 316. (Russian) MR 0001787 (1:298c)
 [2]
 Karl Nickel, The Croccotransformation for the threedimensional Prandtl boundary layer equations, MRC Report 1594, University of Wisconsin, 1975.
 [3]
 , Error bounds and uniqueness for the solutions of nonlinear strongly coupled parabolic systems of differential equations, MRC Report 1596, University of Wisconsin, 1975.
 [4]
 , Fehlerschranken und Eindeutigkeitsaussagan für die Lösungen nichtlinearer, stark gekoppelter parabolischer Differentialgleichungen. Math. Z. 152 (1976), 3345.
 [5]
 , New results on strongly coupled systems of parabolic differential equations. Proc. Fourth Dundee Conf. on Ordinary and Partial Differential Equations (March 30April 2, 1976), Lecture Notes in Math., vol. 564, SpringerVerlag, Berlin and New York, 1976. MR 0605666 (58:29279)
 [6]
 , The lemma of Max MüllerNagumoWestphal for strongly coupled systems of parabolic functional differential equations, MRC Report 1800, 1977. (German transl, available from the University of Freiburg.)
 [7]
 R. M. Redheffer, Die Collatzsche Monotonie bei Anfangswertproblemen, Arch. Rational Mech. Anal. 14 (1963), 196212. MR 0157102 (28:342)
 [8]
 R. M. Redheffer and W. Walter, Existence theorems for strongly coupled systems of partial differential equations over Bernstein classes, Bull. Amer. Math. Soc. 82 (1976), 899902. MR 0457925 (56:16129)
 [9]
 R. M. Redheffer, Uniqueness, stability and error estimation for parabolic functionaldifferential equations, Ber. 9, Univ. Karlsruhe (1976). Accepted by the Soviet Academy of Sciences in October, 1976 for the Jubilee Volume dedicated to the 70th anniversary of Academician I. N. Vekua.
 [10]
 , Das Maximumprinzip in unbeschränkten Gebieten für parabolische Ungleichungen mit Funktionalen, Math. Ann. 226 (1977), 155170. MR 0450786 (56:9079)
 [11]
 , Inequalities involving derivatives, Pacific J. Math. 85 (1979), 165178. MR 571634 (81f:26012)
 [12]
 , Comparison theorems for parabolic functional inequalities, Pacific J. Math. 85 (1979), 447470. MR 574929 (81i:35164)
 [13]
 , Nonuniqueness of the null solution for strongly coupled systems of parabolic differential equations, Math. Z. 171 (1980), 8390.
 [14]
 J. Szarski, Differential inequalities, Monogr. Mat., Tom 43, Warsaw, 1965. MR 0190409 (32:7822)
 [15]
 W. Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 55, SpringerVerlag, Berlin and New York, 1970. (Further references to the early history can be found here.) MR 0271508 (42:6391)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
35R10,
35K60
Retrieve articles in all journals
with MSC:
35R10,
35K60
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198005838563
PII:
S 00029947(1980)05838563
Article copyright:
© Copyright 1980
American Mathematical Society
