Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Splitting criteria for $ \mathfrak{g}$-modules induced from a parabolic and the Berňsteĭn-Gel'fand-Gel'fand resolution of a finite-dimensional, irreducible $ \mathfrak{g}$-module


Author: Alvany Rocha-Caridi
Journal: Trans. Amer. Math. Soc. 262 (1980), 335-366
MSC: Primary 17B10; Secondary 22E47
DOI: https://doi.org/10.1090/S0002-9947-1980-0586721-0
MathSciNet review: 586721
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{g}$ be a finite dimensional, complex, semisimple Lie algebra and let V be a finite dimensional, irreducible $ \mathcal{g}$-module. By computing a certain Lie algebra cohomology we show that the generalized versions of the weak and the strong Bernstein-Gelfand-Gelfand resolutions of V obtained by H. Garland and J. Lepowsky are identical.

Let G be a real, connected, semisimple Lie group with finite center. As an application of the equivalence of the generalized Bernstein-Gelfand-Gelfand resolutions we obtain a complex in terms of the degenerate principal series of G, which has the same cohomology as the de Rham complex.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, A certain category of $ \mathcal{g}$-modules, Funkcional. Anal, i Priložen. (2) 10 (1976), 1-8. MR 0407097 (53:10880)
  • [2] -, Differential operators on the base affine space and a study of $ \mathcal{g}$-modules, Lie groups and their representations, Proc. Summer School on Group Representations (I. M. Gelfand, ed.), Bolyai János Math. Soc., Wiley, New York, 1975, pp. 39-64.
  • [3] N. Bourbaki, Groupes et algèbres de Lie, Eléments de Mathématique, Hermann, Paris, 1968, Chap. IV-VI. MR 0240238 (39:1590)
  • [4] R. W. Carter, Simple groups of Lie type, Wiley, New York, 1972. MR 0407163 (53:10946)
  • [5] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1966. MR 0144979 (26:2519)
  • [6] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. MR 0498737 (58:16803a)
  • [7] T. Enright, On the fundamental series of a real semi-simple Lie algebra: their irreducibility, resolutions and multiplicity formulae, Ann. of Math. (2) 110 (1979), 1-82. MR 541329 (81a:17003)
  • [8] T. Enright and N. R. Wallach, The fundamental series of representations of a real semi-simple Lie algebra, Acta Math. 140 (1978), 1-32. MR 0476814 (57:16368)
  • [9] H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34 (1976), 37-76. MR 0414645 (54:2744)
  • [10] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, Berlin and New York, 1971. MR 0346025 (49:10751)
  • [11] J. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, Berlin and New York, 1972. MR 0323842 (48:2197)
  • [12] -, Finite and infinite dimensional modules for semi-simple Lie algebras, Queen's Papers in Pure and Applied Math. 48 (1978), 1-64.
  • [13] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387. MR 0142696 (26:265)
  • [14] J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra (2) 49 (1977), 496-511. MR 0476813 (57:16367)
  • [15] -, Generalized Verma modules, the Cartan-Helgason theorem and the Harish-Chandra homomorphism, J. Algebra (2) 49 (1977), 470-495. MR 0463360 (57:3312)
  • [16] S. Mac Lane, Homology, Springer-Verlag, Berlin and New York, 1963. MR 0156879 (28:122)
  • [17] D. N. Verma, Structure of certain induced representations of complex semi-simple Lie algebras, Dissertation, Yale University, 1966.
  • [18] N. R. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, New York, 1973. MR 0498996 (58:16978)
  • [19] -, Unpublished manuscript notes on the Borel-Weil theorem.
  • [20] -, On the Enright-Varadarajan modules, a construction of the discrete series, Ann. Sci. École Norm. Sup (4) 9 (1976), 81-102. MR 0422518 (54:10505)
  • [21] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman & Co., Glenview, I11., 1971. MR 0295244 (45:4312)
  • [22] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, Berlin and New York, 1972. MR 0498999 (58:16979)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10, 22E47

Retrieve articles in all journals with MSC: 17B10, 22E47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0586721-0
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society