Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ L\sp{p}$ behavior of certain second order partial differential operators


Authors: Carlos E. Kenig and Peter A. Tomas
Journal: Trans. Amer. Math. Soc. 262 (1980), 521-531
MSC: Primary 42B15; Secondary 35E20, 42A45
DOI: https://doi.org/10.1090/S0002-9947-1980-0586732-5
MathSciNet review: 586732
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give examples of bounded inverses of polynomials in $ {{\textbf{R}}^n}$, $ n\, > \,1$, which are not Fourier multipliers of $ {L^p}\,({{\textbf{R}}^n})$ for any $ p\, \ne \,2$. Our main tool is the Kakeya set construction of C. Fefferman. Using these results, we relate the invertibility on $ {L^p}$ of a linear second order constant coefficient differential operator D on $ {{\textbf{R}}^n}$ to the geometric structure of quadratic surfaces associated to its symbol d. This work was motivated by multiplier conjectures of N. Rivière and R. Strichartz.


References [Enhancements On Off] (What's this?)

  • [1] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), 1-22. MR 0447949 (56:6259)
  • [2] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330-336. MR 0296602 (45:5661)
  • [3] -, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 0320624 (47:9160)
  • [4] K. de Leeuw, On $ {L^p}$ multipliers, Ann. of Math. (2) 91 (1965), 364-374. MR 0174937 (30:5127)
  • [5] F. P. Greenleaf, M. Moskowitz and L. P. Rothchild, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math. 132 (1974), 225-254. MR 0425035 (54:12993)
  • [6] L. Hörmander, Estimates for translation invariant operators on $ {L^p}$ spaces, Acta Math. 104 (1960), 93-139. MR 0121655 (22:12389)
  • [7] F. T. Iha and C. F. Schubert, The spectrum of partial differential operators on $ {L^p}\,({{\textbf{R}}^n})$, Trans. Amer. Math. Soc. 152 (1970), 215-226. MR 0270211 (42:5103)
  • [8] C. Kenig ad P. Tomas, On conjectures of Rivière and Strichartz, Bull. Amer. Math. Soc. (N. S.) 1 (1979), 694-697. MR 532556 (81g:42019)
  • [9] W. Littman, C. McCarthy and N. Rivière, The non-existence of $ {L^p}$ estimates for certain translation invariant operators, Studia Math. 30 (1968), 219-229. MR 0231127 (37:6682)
  • [10] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91.
  • [11] J. Marcinkiewicz and A. Zygmund, Quelques inégalités pour les opérations linéaires, Fund. Math. 32 (1939), 115-121. MR 0115885 (22:6683)
  • [12] N. Rivière, Some open questions, Harmonic Analysis in Euclidean spaces, Proc. Sympos. Pure Math. vol. 35, Part 1, Amer. Math. Soc., Providence, R. I., 1979, p. xvii.
  • [13] M. Schechter, Partial differential operators on $ {L^p}\,({E^n})$, Bull. Amer. Math. Soc. 75 (1969), 548-549. MR 0254669 (40:7876)
  • [14] -, Spectra of partial differential operators, North-Holland, Amsterdam and London, 1971.
  • [15] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [16] P. A. Tomas, On radial Fourier multipliers, Thesis, Cornell University, 1974.
  • [17] -, A note on invariant Fourier multipliers, preprint, 1977.
  • [18] M. Jodeit, Jr., A note on Fourier multipliers, Proc. Amer. Math. Soc. 27 (1971), 423-424. MR 0270072 (42:4965)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B15, 35E20, 42A45

Retrieve articles in all journals with MSC: 42B15, 35E20, 42A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0586732-5
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society