Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak subordination and stable classes of meromorphic functions


Author: Kenneth Stephenson
Journal: Trans. Amer. Math. Soc. 262 (1980), 565-577
MSC: Primary 30D55; Secondary 30C80
DOI: https://doi.org/10.1090/S0002-9947-1980-0586736-2
MathSciNet review: 586736
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces the notion of weak subordination: If F and G are meromorphic in the unit disc $ \mathcal{u}$, then F is weakly subordinate to G, written $ F\, < \,G$, provided there exist analytic functions $ \phi $ and $ \omega :\,\mathcal{u}\, \to \,\mathcal{u}$, with $ \phi $ an inner function, so that $ F\, \circ \,\phi \, = \,G\, \circ \,\omega $. A class $ \mathcal{X}$ of meromorphic functions is termed stable if $ F\,\mathop w\limits_ < \,G$ and $ G\, \in \,\mathcal{X}\, \Rightarrow \,F\, \in \,\mathcal{X}$.

The motivation is recent work of Burkholder which relates the growth of a function with its range and boundary values. Assume F and G are meromorphic and G has nontangential limits, a.e. Assume further that $ F(\mathcal{u})\, \cap \,G(\mathcal{u})\, \ne \,\emptyset $ and $ G({e^{i\theta }})\, \notin \,F(\mathcal{u})$, a.e. This is denoted by $ F\, < \,G$. Burkholder proved for several classes $ \mathcal{X}$ that

$\displaystyle F\, < \,G \qquad{\text{and}}\quad G\, \in \,\mathcal{X}\, \Rightarrow \,F\, \in \,\mathcal{X}.$ ($ (\ast)$)

The main result of this paper is the Theorem: $ F\, < \,G\, \Rightarrow \,F\,{ \prec ^w}\,G$. In particular, implication (*) holds for all stable classes $ \mathcal{X}$. The paper goes on to study various stable classes, which include BMOA, $ {H^p}$, $ 0\, < \,p\, \leqslant \,\infty $, $ {N_{\ast}}$, the space of functions of bounded characteristic, and the $ {M^\Phi }$ spaces introduced by Burkholder. VMOA and the Bloch functions are examples of classes which are not stable.


References [Enhancements On Off] (What's this?)

  • [1] L. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960. MR 0114911 (22:5729)
  • [2] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37. MR 0361090 (50:13536)
  • [3] D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Adv. in Math. 26 (1977), 182-205. MR 0474525 (57:14163)
  • [4] -, Boundary value estimation of the range of an analytic function, Michigan Math. J. 25 (1978), 197-212. MR 501568 (82e:30071)
  • [5] E. F. Collingwood and A. H. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., no. 56, Cambridge Univ. Press, New York, 1966. MR 0231999 (38:325)
  • [6] P. L. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [7] L. J. Hansen, Boundary values and mapping properties of $ {H^p}$ functions. Math. Z. 128 (1972), 189-194. MR 0311909 (47:471)
  • [8] W. K. Hayman and Ch. Pommerenke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc. 10 (1978), 219-224. MR 500932 (81g:30044)
  • [9] L. L. Helms, Introduction to potential theory, Interscience, New York, 1969. MR 0261018 (41:5638)
  • [10] R. Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, Berlin and New York, 1970. MR 0279280 (43:5003)
  • [11] E. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442-449. MR 0223914 (36:6961)
  • [12] Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), 591-602. MR 0454017 (56:12268)
  • [13] I. I. Priwalow, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956. MR 0083565 (18:727f)
  • [14] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. MR 0276744 (43:2484)
  • [15] W. Rudin, A generalization of a theorem of Frostman, Math. Scand. 21 (1967), 136-143. MR 0235151 (38:3463)
  • [16] -, $ {L^p}$-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228. MR 0410355 (53:14105)
  • [17] K. Stephenson, Functions which follow inner functions, Illinois J. Math. 23 (1979), 259-266. MR 528562 (80h:30030)
  • [18] M. Tsuji, Potential theory in modern function theory, Chelsea, New York, 1975. MR 0414898 (54:2990)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D55, 30C80

Retrieve articles in all journals with MSC: 30D55, 30C80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0586736-2
Keywords: Inner function, composition, subordination, Hardy spaces, BMOA
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society