Subnormal operators, Toeplitz operators and spectral inclusion

Author:
Gerard E. Keough

Journal:
Trans. Amer. Math. Soc. **263** (1981), 125-135

MSC:
Primary 47B20; Secondary 47B35

DOI:
https://doi.org/10.1090/S0002-9947-1981-0590415-6

MathSciNet review:
590415

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a subnormal operator on the Hilbert space , and let be its minimal normal extension on . Let be a scalar spectral measure for . If , define , where denotes orthogonal projection. has the -Spectral Inclusion Property ( -SIP) if , for all , and has the -Spectral Inclusion Property (-SIP) if , for all .

It is shown that has the -SIP if and only if , the approximate point spectrum of . This is equivalent to requiring that have angle 0 with , for all nonempty, relatively open . has the -SIP if this angle condition holds for all proper Borel subsets of . If is pure and has the or -SIP, then it is shown that , for all appropriate .

**[M]**M. B. Abrahamse and R. G. Douglas,*A class of subnormal operators related to multiply-connected domains*, Advances in Math.**19**(1976), no. 1, 106–148. MR**0397468**, https://doi.org/10.1016/0001-8708(76)90023-2**[J]**J. W. Bunce and J. A. Deddens,*On the normal spectrum of a subnormal operator*, Proc. Amer. Math. Soc.**63**(1977), no. 1, 107–110. MR**0435912**, https://doi.org/10.1090/S0002-9939-1977-0435912-3**[L]**L. A. Coburn,*Weyl’s theorem for nonnormal operators*, Michigan Math. J.**13**(1966), 285–288. MR**0201969****[R]**Ronald G. Douglas,*Banach algebra techniques in operator theory*, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR**0361893****[R]**R. G. Douglas and Carl Pearcy,*Spectral theory of generalized Toeplitz operators*, Trans. Amer. Math. Soc.**115**(1965), 433–444. MR**0199706**, https://doi.org/10.1090/S0002-9947-1965-0199706-5**[P]**P. A. Fillmore, J. G. Stampfli, and J. P. Williams,*On the essential numerical range, the essential spectrum, and a problem of Halmos*, Acta Sci. Math. (Szeged)**33**(1972), 179–192. MR**0322534****1.**Richard Frankfurt,*Subnormal weighted shifts and related function spaces*, J. Math. Anal. Appl.**52**(1975), no. 3, 471–489. MR**0482334**, https://doi.org/10.1016/0022-247X(75)90074-8**[P]**Paul R. Halmos,*Introduction to Hilbert space and the theory of spectral multiplicity*, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. MR**1653399****2.**Paul R. Halmos,*Spectra and spectral manifolds*, Ann. Soc. Polon. Math.**25**(1952), 43–49 (1953). MR**0055581****3.**Paul R. Halmos,*A Hilbert space problem book*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0208368****4.**P. R. Halmos,*Ten problems in Hilbert space*, Bull. Amer. Math. Soc.**76**(1970), 887–933. MR**0270173**, https://doi.org/10.1090/S0002-9904-1970-12502-2**[P]**Philip Hartman and Aurel Wintner,*On the spectra of Toeplitz’s matrices*, Amer. J. Math.**72**(1950), 359–366. MR**0036936**, https://doi.org/10.2307/2372039**5.**Robert F. Olin,*Functional relationships between a subnormal operator and its minimal normal extension*, Pacific J. Math.**63**(1976), no. 1, 221–229. MR**0420324****6.**Carl M. Pearcy,*Some recent developments in operator theory*, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 36. MR**0487495****7.**Allen L. Shields,*Weighted shift operators and analytic function theory*, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. Math. Surveys, No. 13. MR**0361899**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47B20,
47B35

Retrieve articles in all journals with MSC: 47B20, 47B35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0590415-6

Keywords:
Subnormal operator,
spectral inclusion theorems,
angle between subspaces,
reducing essential spectrum,
extremely noncompact operator

Article copyright:
© Copyright 1981
American Mathematical Society