Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Degenerations of $ K3$ surfaces of degree $ 4$


Author: Jayant Shah
Journal: Trans. Amer. Math. Soc. 263 (1981), 271-308
MSC: Primary 14J25; Secondary 14J10, 14J17
DOI: https://doi.org/10.1090/S0002-9947-1981-0594410-2
MathSciNet review: 594410
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A generic $ K3$ surface of degree $ 4$ may be embedded as a nonsingular quartic surface in $ {{\mathbf{P}}_3}$. Let $ f:X \to \operatorname{Spec} \;{\mathbf{C}}[[t]]$ be a family of quartic surfaces such that the generic fiber is regular. Let $ {\Sigma _0}$, $ {\Sigma _2^0}$, $ {\Sigma _4}$ be respectively a nonsingular quadric in $ {{\mathbf{P}}_3}$, a cone in $ {{\mathbf{P}}_3}$ over a nonsingular conic and a rational, ruled surface in $ {{\mathbf{P}}_9}$ which has a section with self intersection $ - 4$. We show that there exists a flat, projective morphism $ f':X' \to {\text{Spec}}\;{\mathbf{C}}[[t]]$ and a map $ \rho :{\text{Spec}}\:{\mathbf{C}}[[t]] \to {\text{Spec}}\:{\mathbf{C}}[[t]]$ such that (i) the generic fiber of $ f'$ and the generic fiber of the pull-back of $ f$ via $ \rho $ are isomorphic, (ii) the fiber $ {X'_0}$ of $ f'$ over the closed point of $ {\text{Spec}}\;{\mathbf{C}}[[t]]$ has only insignificant limit singularities and (iii) $ {X'_0}$ is either a quadric surface or a double cover of $ {\Sigma _0}$, $ {\Sigma _2^0}$ or $ {\Sigma _4}$. The theorem is proved using the geometric invariant theory.


References [Enhancements On Off] (What's this?)

  • [1] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., vol. 146, Springer-Verlag, Berlin and New York, 1970. MR 0274461 (43:224)
  • [2] V. I. Arnold, Local normal forms of functions, Invent. Math. 35 (1976), 87-109. MR 0467795 (57:7646)
  • [3] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136. MR 0199191 (33:7340)
  • [4] -, Deformations of singularities, Tata Inst. Fundamental Research Lecture Notes, No. 54, Notes by C. S. Seshadri and A. Tannenbaum.
  • [5] P. Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5-78. MR 0498552 (58:16653b)
  • [6] E. Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975), 43-85.
  • [7] V. S. Kulikov, Degenerations of $ K3$ surfaces and Enriques surfaces, Math. USSR-Izv. 11 (1977), 957-989.
  • [8] A. Mayer, Families of $ K - 3$ surfaces, Nagoya Math. J. 48 (1972), 1-17. MR 0330172 (48:8510)
  • [9] D. Mumford, Geometric invariant theory, Academic Press, New York, 1965. MR 0214602 (35:5451)
  • [10] R. Piene, Some formulas for a surface in $ {{\mathbf{P}}^3}$, Algebraic Geometry, Lecture Notes in Math., vol. 687, Springer-Verlag, Berlin and New York, 1978. MR 527235 (81e:14034)
  • [11] U. Persson and H. Pinkham, Degeneration of surfaces with trivial canonical bundle (to appear). MR 604042 (82f:14030)
  • [12] B. Saint-Donat, Projective models of $ K{\mathbf{ - }}3$ surfaces, Amer. J. Math. 96 (1974), 602-639. MR 0364263 (51:518)
  • [13] K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325. MR 0354669 (50:7147)
  • [14] J. Sally, Cohen-Macaulay local ring of maximal embedding dimension, J. Algebra 56 (1979), 168-183. MR 527163 (80e:14022)
  • [15] W. Schmid, Variation of Hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973), 211-319. MR 0382272 (52:3157)
  • [16] J. Shah, Insignificant limit singularities of surfaces and their mixed Hodge structure, Ann. of Math. 109 (1979), 497-536. MR 534760 (81e:14021)
  • [17] -, A complete moduli space for $ K3$ surfaces of degree $ 2$, Ann. of Math. (to appear).
  • [18] -, Monodromy of quartic surfaces and sextic double planes, Thesis, M.I.T., Cambridge, Mass., 1974.
  • [19] -, Surjectivity of the period map in the case of quartic surfaces and sextic double planes, Bull. Amer. Math. Soc. 82 (1976), 716-718. MR 0417188 (54:5246)
  • [20] K. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka J. Math. 11 (1974), 1-8. MR 0354646 (50:7124)
  • [21] -, Certain invariant subrings are Gorenstein. II, Osaka J. Math. 11 (1974), 379-388.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14J25, 14J10, 14J17

Retrieve articles in all journals with MSC: 14J25, 14J10, 14J17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0594410-2
Keywords: $ K3$ surfaces, degeneration of surfaces, compactification of moduli, geometric invariant theory, insignificant limit singularities
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society