Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Localizable analytically uniform spaces and the fundamental principle


Author: Sönke Hansen
Journal: Trans. Amer. Math. Soc. 264 (1981), 235-250
MSC: Primary 35E20; Secondary 46F05
DOI: https://doi.org/10.1090/S0002-9947-1981-0597879-2
MathSciNet review: 597879
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Fundamental Principle of Ehrenpreis states that the solutions of homogeneous linear partial differential equations with constant coefficients have natural integral representations. Using the Oka-Cartan procedure Ehrenpreis derived this theorem for spaces of functions and distributions which he called localizable analytically uniform (LAU-spaces). With a new definition of LAU-spaces we explain how Hörmander's results on cohomology with bounds fit into Ehrenpreis' method of proof of the Fundamental Principle. Furthermore, we show that many of the common Fréchet-Montel spaces of functions are LAU-spaces.


References [Enhancements On Off] (What's this?)

  • [1] A. Baernstein II, Representation of holomorphic function by boundary integrals, Trans. Amer. Math. Soc. 160 (1971), 27-37. MR 0283182 (44:415)
  • [2] C. A. Berenstein and M. A. Dostal, Analytically uniform spaces and their applications to convolution equations, Lecture Notes in Math., vol. 256, Springer-Verlag, Berlin and New York, 1972. MR 0493316 (58:12344)
  • [3] K.-D. Bierstedt, A question on inductive limits of weighted locally convex function spaces, Atas do décimo primeiro coloquio brasileiro de matemática, Pocos de Caldas, Brasil, 1977; Vol. I, IMPA, Rio de Janeiro, 1978, pp. 213-226. MR 526339 (80k:46023)
  • [4] K.-D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits, Paderborn, 1980 (preprint). MR 656483 (84g:46037)
  • [5] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351-407. MR 0203201 (34:3054)
  • [6] J.-E. Björk, The fundamental principle. Univ. of Stockholm, 1975 (preprint).
  • [7] C.-C. Chou, La transformation de Fourier complexe et l'équation de convolution, Lecture Notes in Math., vol. 325, Springer-Verlag, Berlin and New York, 1973. MR 0487438 (58:7071)
  • [8] L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients, and some of its applications, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1971, pp. 161-174. MR 0133594 (24:A3420)
  • [9] -, Fourier analysis in several complex variables, Pure and Appl. Math., vol. 17, Wiley-Interscience, New York, 1970.
  • [10] K. Floret and J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math., vol. 56, Springer-Verlag, Berlin and New York, 1968. MR 0226355 (37:1945)
  • [11] L. Hörmander, Supports and singular supports of convolutions, Acta Math. 110 (1963), 279-302. MR 0154112 (27:4070)
  • [12] -, An introduction to complex analysis in several variables, 2nd ed., North-Holland, Amsterdam and London, 1973.
  • [13] G. Köthe, Topologische lineare Räume. I, (2 Auflg.) Die Grundlehren der Math. Wissenschaften, Bd. 107, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
  • [14] O. Liess, The fundamental principle of Ehrenpreis-Palamodov, Inst. of Math., Bucharest, 1976 (preprint).
  • [15] -, Intersection properties of weak analytically uniform classes of functions, Ark. Mat. 16 (1976), 93-111. MR 0430762 (55:3767)
  • [16] V. I. Palamodov, Linear differential operators with constant coefficients, Die Grundlehren der Math. Wissenschaften, Bd. 168, Springer-Verlag, Berlin, Heidelberg and New York, 1979. English transl. of Linejuye differencial'nye operatory s postojannymi koefficientami, "Nauka", Moscow, 1967. MR 0243193 (39:4517)
  • [17] B. A. Taylor, A seminorm topology for some $ (DF)$-spaces of entire functions. Duke Math. J. 38 (1971), 379-385. MR 0277734 (43:3467)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35E20, 46F05

Retrieve articles in all journals with MSC: 35E20, 46F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0597879-2
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society