Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Boundary interpolation sets for holomorphic functions smooth to the boundary and BMO


Author: Joaquim Bruna
Journal: Trans. Amer. Math. Soc. 264 (1981), 393-409
MSC: Primary 30E05; Secondary 30D60, 42A50
MathSciNet review: 603770
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {A^p}$ denote the class of holomorphic functions on the unit disc whose first $ p$-derivatives belong to the disc algebra. We characterize the boundary interpolation sets for $ {A^p}$, that is, those closed sets $ E \subset T$ such that every function in $ {C^p}(E)$ extends to a function in $ {A^p}$.

We also give a constructive proof of the corresponding result for $ {A^\infty }$ (see [1]).

We show that the structure of these sets is in some sense related to BMO and that this fact can be used to obtain precise estimates of outer functions vanishing on $ E$.


References [Enhancements On Off] (What's this?)

  • [1] H. Alexander, B. A. Taylor, and D. L. Williams, The interpolating sets for 𝐴^{∞}, J. Math. Anal. Appl. 36 (1971), 556–566. MR 0288296
  • [2] Albert Baernstein II, Analytic functions of bounded mean oscillation, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 3–36. MR 623463
  • [3] Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345. MR 0050011
  • [4] Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [5] E. M. Dyn′kin, Free interpolation sets for Hölder classes, Mat. Sb. (N.S.) 109(151) (1979), no. 1, 107–128, 166 (Russian). MR 538552
  • [6] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498
  • [7] B. Malgrange, Ideals of differentiate function, Tata Institute, Bombay, 1966.
  • [8] Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19–23, 1978. MR 521811
  • [9] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [10] B. A. Taylor and D. L. Williams, Zeros of Lipschitz functions analytic in the unit disc, Michigan Math. J. 18 (1971), 129–139. MR 0283176
  • [11] B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266–1283. MR 0273024
  • [12] Joaquim Bruna, Les ensembles d’interpolation des 𝐴^{𝑝}(𝐷), C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 1, A25–A27 (French, with English summary). MR 564144

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30E05, 30D60, 42A50

Retrieve articles in all journals with MSC: 30E05, 30D60, 42A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0603770-5
Keywords: Boundary interpolation sets, Carleson sets, Lipschitz conditions, BMO, BMOA, outer functions
Article copyright: © Copyright 1981 American Mathematical Society