Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On perfect measures


Author: G. Koumoullis
Journal: Trans. Amer. Math. Soc. 264 (1981), 521-537
MSC: Primary 28C15; Secondary 03E55, 54D18, 60A99
DOI: https://doi.org/10.1090/S0002-9947-1981-0603778-X
MathSciNet review: 603778
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mu $ be a nonzero positive perfect measure on a $ \sigma $-algebra of subsets of a set $ X$. It is proved that if $ \{ {A_i}:i \in I\} $ is a partition of $ X$ with $ {\mu ^ \ast }({A_i}) = 0$ for all $ i \in I$ and the cardinal of $ I$ non-(Ulam-) measurable, then there is $ J \subset I$ such that $ { \cup _{_{i \in J}}}{A_i}$ is not $ \mu $-measurable, generalizing a theorem of Solovay about the Lebesgue measure. This result is used for the study of perfect measures on topological spaces. It is proved that every perfect Borel measure on a metric space is tight if and only if the cardinal of the space is nonmeasurable. The same result is extended to some nonmetric spaces and the relation between perfectness and other smoothness properties of measures on topological spaces is investigated.


References [Enhancements On Off] (What's this?)

  • [1] W. W. Comfort and S. Negrepontis, Continuous pseudometrics, Marcel Dekker, New York, 1975. MR 0410618 (53:14366)
  • [2] N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967. MR 0206190 (34:6011b)
  • [3] R. J. Gardner, The regularity of Borel measures and Borel measure-compactness, Proc. London Math. Soc. (3) 30 (1975), 95-113. MR 0367145 (51:3387)
  • [4] R. Haydon, On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc. (3) 29 (1974), 1-16. MR 0361745 (50:14190)
  • [5] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1960. MR 0033869 (11:504d)
  • [6] T. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
  • [7] M. Katetov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73-84. MR 0048531 (14:27c)
  • [8] J. H. B. Kemperman and D. Maharam, $ {R^c}$ is not almost Lindelö, Proc. Amer. Math. Soc. 24 (1970), 772-773. MR 0253285 (40:6500)
  • [9] R. B. Kirk, Measures in topological spaces and $ B$-compactness, Indag. Math. 31 (1969), 172-183. MR 0246104 (39:7410)
  • [10] -, Locally compact, $ B$-compact spaces, Indag. Math. 31 (1969), 333-344.
  • [11] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139-156. MR 0204602 (34:4441)
  • [12] D. J. Lutzer, Another property of the Sorgenfrey line, Compositio Math. 24 (1972), 359-363. MR 0307171 (46:6292)
  • [13] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. MR 0059994 (15:610a)
  • [14] J. Marik, The Baire and Borel measure, Czechoslovak Math. J. 7(82) (1957), 248-253. MR 0088532 (19:535f)
  • [15] E. Michael, $ {\aleph _0}$-spaces, J. Math. Mech. 15 (1966), 983-1002. MR 0206907 (34:6723)
  • [16] D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527-533.
  • [17] W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633-639. MR 0228645 (37:4225)
  • [18] -, Measures and mappings on topological spaces, Proc. London Math. Soc. (3) 19 (1969), 493-508.
  • [19] -, Measures on metacompact spaces, Proc. London Math. Soc. (3) 20 (1970), 507-524. MR 0437706 (55:10630)
  • [20] N. Noble and M. Ulmer, Factoring functions on cartesian products, Trans. Amer. Math. Soc. 163 (1972), 329-339. MR 0288721 (44:5917)
  • [21] K. Prikry, On images of the Lebesgue measure. I, II, III, manuscripts, 1977.
  • [22] K. A. Ross and A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71 (1964), 398-403. MR 0164314 (29:1611)
  • [23] C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130. MR 0059997 (15:610d)
  • [24] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254.
  • [25] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56. MR 0265151 (42:64)
  • [26] -, Real-valued measurable cardinals, Axiomatic Set Theory, Proc. Sympos. Pure Math., vol. 13, Part I, Amer. Math. Soc., Providence, R. I., 1971, pp. 397-428. MR 0290961 (45:55)
  • [27] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.
  • [28] V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.
  • [29] R. E. Zink, On the structure of measure spaces, Acta Math. 107 (1962), 53-71. MR 0140643 (25:4060)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28C15, 03E55, 54D18, 60A99

Retrieve articles in all journals with MSC: 28C15, 03E55, 54D18, 60A99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0603778-X
Keywords: Perfect, $ \sigma $-additive, $ \tau $-additive, tight measure, measurable cardinal, weakly $ \theta $-refinable, weakly metacompact, developable, realcompact space
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society