Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Iteration and the solution of functional equations for functions analytic in the unit disk


Author: Carl C. Cowen
Journal: Trans. Amer. Math. Soc. 265 (1981), 69-95
MSC: Primary 30D05; Secondary 39B05, 60J99
DOI: https://doi.org/10.1090/S0002-9947-1981-0607108-9
MathSciNet review: 607108
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers the classical functional equations of Schroeder $ f \circ \varphi = \lambda f$, and Abel $ f \circ \varphi = f + 1$, and related problems of fractional iteration where $ \varphi $ is an analytic mapping of the open unit disk into itself. The main theorem states that under very general conditions there is a linear fractional transformation $ \Phi $ and a function $ \sigma $ analytic in the disk such that $ \Phi \circ \sigma = \sigma \circ \varphi $ and that, with suitable normalization, $ \Phi $ and $ \sigma $ are unique. In particular, the hypotheses are satisfied if $ \varphi $ is a probability generating function that does not have a double zero at 0. This intertwining relates solutions of functional equations for $ \varphi $ to solutions of the corresponding equations for $ \Phi $. For example, it follows that if $ \varphi $ has no fixed points in the open disk, then the solution space of $ f \circ \varphi = \lambda f$ is infinite dimensional for every nonzero $ \lambda $. Although the discrete semigroup of iterates of $ \varphi $ usually cannot be embedded in a continuous semigroup of analytic functions mapping the disk into itself, we find that for each $ z$ in the disk, all sufficiently large fractional iterates of $ \varphi $ can be defined at $ z$. This enables us to find a function meromorphic in the disk that deserves to be called the infinitesimal generator of the semigroup of iterates of $ \varphi $. If the iterates of $ \varphi $ can be embedded in a continuous semigroup, we show that the semigroup must come from the corresponding semigroup for $ \Phi $, and thus be real analytic in $ t$. The proof of the main theorem is not based on the well known limit technique introduced by Koenigs (1884) but rather on the construction of a Riemann surface on which an extension of $ \varphi $ is a bijection. Much work is devoted to relating characteristics of $ \varphi $ to the particular linear fractional transformation constructed in the theorem.


References [Enhancements On Off] (What's this?)

  • [1] K. B. Athreya and P. E. Ney, Branching processes, Springer-Verlag, Berlin, 1972. MR 0373040 (51:9242)
  • [2] I. N. Baker, Fractional iteration near a fixpoint of multiplier $ 1$, J. Australian Math. Soc. 4 (1964), 143-148. MR 0165080 (29:2369)
  • [3] E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. MR 0480965 (58:1112)
  • [4] G. T. Cargo, Fixed points and ideal fixed points of holomorphic functions, Notices Amer. Math. Soc. 25 (1978), A636.
  • [5] A. Denjoy, Sur l'itération des fonctions analytiques, C. R. Acad. Sci. Paris 182 (1926), 255-257.
  • [6] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 0193606 (33:1824)
  • [7] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314.
  • [8] T. E. Harris, The theory of branching processes, Springer-Verlag, Berlin, 1963. MR 0163361 (29:664)
  • [9] H. Kamowitz, The spectra of composition operators on $ {H^p}$, J. Functional Anal. 18 (1975), 132-150. MR 0407645 (53:11417)
  • [10] S. Karlin and J. McGregor, Spectral theory of branching processes, I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 6-33, 34-54.
  • [11] -, On the spectral representation of branching processes with mean $ 1$, J. Math. Anal. Appl. 21 (1968), 485-495. MR 0224171 (36:7215)
  • [12] -, Embeddability of discrete time simple branching processes into continuous time processes, Trans. Amer. Math. Soc. 132 (1968), 115-136. MR 0222966 (36:6015)
  • [13] -, Embedding iterates of analytic functions with two fixed points into continuous groups, Trans. Amer. Math. Soc. 132 (1968), 137-145. MR 0224790 (37:389)
  • [14] G. Koenigs, Recherches sur les intégrales des certaines equations fonctionelles, Ann. École Norm. Sup. (3) 1 (1884), supplement, 3-41. MR 1508749
  • [15] M. Kuczma, On the Schroeder equation, Roxprawy Mat. 34 (1963).
  • [16] R. Nevanlinna, Analytic functions, Springer-Verlag, Berlin, 1970. MR 0279280 (43:5003)
  • [17] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap. (1) 2 (1934-1935), 129-155.
  • [18] R. C. Penney, conversation with the author, 1979.
  • [19] Ch. Pommerenke, Über die Subordination analytischer Functionen, J. Reine Angew. Math. 218 (1965), 159-173. MR 0180669 (31:4900)
  • [20] -, On the iteration of analytic functions in a half plane. I, J. London Mat. Soc. (2) 19 (1979), 439-447.
  • [21] E. Schroeder, Über itierte Funktionen, Math. Ann. 3 (1871), 296-322.
  • [22] G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203-258. MR 0107016 (21:5744)
  • [23] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 0114894 (22:5712)
  • [24] S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340. MR 1501813
  • [25] J. Wolff, Sur l'itération des fonctions, C. R. Acad. Sci. Paris 182 (1926), 42-43, 200-201.
  • [26] -, L'intégrale d'une fonction holomorphe et a partie reelle positive dans un demi plan est univalente, C. R. Acad. Sci. Paris 198 (1934), 1209-1210.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D05, 39B05, 60J99

Retrieve articles in all journals with MSC: 30D05, 39B05, 60J99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0607108-9
Keywords: Functional equation, iteration, analytic function, semigroup, infinitesimal generator, Galton-Watson process
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society