Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A perturbation method in critical point theory and applications


Authors: Abbas Bahri and Henri Berestycki
Journal: Trans. Amer. Math. Soc. 267 (1981), 1-32
MSC: Primary 35J65; Secondary 58E05
MathSciNet review: 621969
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with existence and multiplicity results for nonlinear elliptic equations of the type $ - \Delta u = {\left\vert u \right\vert^{p - 1}}u + h(x)$ in $ \Omega ,\,u = 0$ on $ \partial \Omega $. Here, $ \Omega \subset {{\mathbf{R}}^N}$ is smooth and bounded, and $ h \in {L^2}(\Omega )$ is given. We show that there exists $ {p_N} > 1$ such that for any $ p \in (1,\,{p_N})$ and any $ h \in {L^2}(\Omega )$, the preceding equation possesses infinitely many distinct solutions.

The method rests on a characterization of the existence of critical values by means of noncontractibility properties of certain level sets. A perturbation argument enables one to use the properties of some associated even functional. Several other applications of this method are also presented.


References [Enhancements On Off] (What's this?)

  • [1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0178246
  • [2] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, Math. Res. Center, Univ. of Wisconsin-Madison, Tech. Sum. Report # 1446, 1974.
  • [3] Antonio Ambrosetti, On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova 49 (1973), 195–204. MR 0336068
  • [4] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183
  • [5] Abbas Bahri, Résolution générique d’une équation semi-linéaire, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 4, A251–A254 (French, with English summary). MR 591743
  • [6] -, Topological results on a certain class of functionals and applications, J. Funct. Anal. (in press).
  • [7] Abbas Bahri and Henri Berestycki, Points critiques de perturbations de fonctionnelles paires et applications, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 3, A189–A192 (French, with English summary). MR 594288
  • [8] -, Forced vibrations of superquadratic Hamiltonian systems (to appear); See also: Existence d'une infinité de solutions périodiques pour certains systèmes Hamiltoniens en présence d'un terme de contrainte, C. R. Acad. Sci. Paris. Sér. I 292 (1981), 315-318.
  • [9] -, Existence of periodic solutions for some second order systems of nonlinear ordinary differential equations (to appear).
  • [10] Charles V. Coffman, A minimum-maximum principle for a class of non-linear integral equations, J. Analyse Math. 22 (1969), 391–419. MR 0249983
  • [11] P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416–441. MR 0163310, 10.1090/S0002-9904-1960-10492-2
  • [12] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
  • [13] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 0044116
  • [14] Hans Ehrmann, Über die Existenz der Lösungen von Randwertaufgaben bei gewöhnlichen nichtlinearen Differentialgleichungen zweiter Ordnung, Math. Ann. 134 (1957), 167–194 (German). MR 0092056
  • [15] Svatopluk Fučík and Vladimír Lovicar, Periodic solutions of the equation 𝑥^{′′}(𝑡)+𝑔(𝑥(𝑡))=𝑝(𝑡), Časopis Pěst. Mat. 100 (1975), no. 2, 160–175. MR 0385239
  • [16] Joachim A. Hempel, Multiple solutions for a class of nonlinear boundary value problems., Indiana Univ. Math. J. 20 (1970/1971), 983–996. MR 0279423
  • [17] M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0159197
  • [18] A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 1–32 (Italian, with English summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR 0418150
  • [19] Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 0259955
  • [20] Richard S. Palais, Critical point theory and the minimax principle, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 185–212. MR 0264712
  • [21] Paul H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 729–754. MR 0333442
  • [22] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139–195. MR 0464299

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65, 58E05

Retrieve articles in all journals with MSC: 35J65, 58E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0621969-9
Keywords: Nonlinear elliptic partial differential equation, critical point, perturbation, contractible set, level set, even and noneven functional, multiplicity
Article copyright: © Copyright 1981 American Mathematical Society