Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equivariant cofibrations and nilpotency


Author: Robert H. Lewis
Journal: Trans. Amer. Math. Soc. 267 (1981), 139-155
MSC: Primary 55P05; Secondary 55P99
DOI: https://doi.org/10.1090/S0002-9947-1981-0621979-1
MathSciNet review: 621979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:B \to Y$ be a cofibration whose cofiber is a Moore space. We give necessary and sufficient conditions for $ f$ to be induced by a map of the desuspension of the cofiber into $ B$. These conditions are especially simple if $ B$ and $ Y$ are nilpotent.

We obtain some results on the existence of equivariant Moore spaces, and use them to construct examples of noninduced cofibrations between nilpotent spaces. Our machinery also leads to a cell structure proof of the characterization of pre-nilpotent spaces due to Dror and Dwyer [7], and to a simple proof, for finite fundamental group, of the result of Brown and Kahn [4] that homotopy dimension equals simple cohomological dimension in nilpotent spaces.


References [Enhancements On Off] (What's this?)

  • [1] James E. Arnold, On Steenrod's problem for cyclic $ p$-groups, Canad. J. Math. 29 (1977), 421-428. MR 0440536 (55:13411)
  • [2] I. Berstein and E. Dror, On the homotopy groups of one point union with a bouquet of circles, Proc. Amer. Math. Soc. 71 (1978), 321-324. MR 0494092 (58:13023)
  • [3] K. S. Brown and E. Dror, The Artin-Rees property and homology, Israel J. Math. 22 (1975), 93-109. MR 0389980 (52:10809)
  • [4] K. S. Brown and P. J. Kahn, Homotopy dimension and simple cohomological dimension of spaces, Comment. Math. Helv. 52 (1977), 111-127. MR 0438336 (55:11251)
  • [5] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [6] E. Dror, A generalization of the Whitehead theorem, Lecture Notes in Math., vol. 249, Springer-Verlag, Berlin and New York, 1971. MR 0350725 (50:3217)
  • [7] E. Dror and W. G. Dwyer, Prenilpotent spaces, Amer. J. Math. 98 (1976), 405-413. MR 0407834 (53:11604)
  • [8] W. Dwyer, Vanishing homology over nilpotent groups, Proc. Amer. Math. Soc. 49 (1975), 259-261. MR 0374242 (51:10442)
  • [9] K. Gruenberg, Residual nilpotence, Arch. Math. (Basel) 13 (1962), 408-417. MR 0159881 (28:3097)
  • [10] P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1966.
  • [11] R. H. Lewis, Two results relating nilpotency and cofibrations, Proc. Amer. Math. Soc. 72 (1978), 403-408. MR 507347 (80b:55011)
  • [12] D. Passman, Infinite group rings, Dekker, New York, 1971. MR 0314951 (47:3500)
  • [13] D. S. Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700-712. MR 0104721 (21:3474)
  • [14] J. Serre, Cohomologie des groupes discrets, Ann. of Math. Studies, no. 70, Princeton Univ. Press, Princeton, N. J., 1971. MR 0385006 (52:5876)
  • [15] J. Smith, Topological realization of chain complexes (preprint).
  • [16] J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181. MR 0175956 (31:232)
  • [17] R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148-158. MR 0244215 (39:5532)
  • [18] C. T. C. Wall, Finiteness conditions for $ CW$-complexes, Ann. of Math. (2) 81 (1965), 56-69. MR 0171284 (30:1515)
  • [19] -, Finiteness conditions for $ CW$-complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129-139. MR 0211402 (35:2283)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P05, 55P99

Retrieve articles in all journals with MSC: 55P05, 55P99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0621979-1
Keywords: Nilpotent space, equivariant cofibration, Moore space, pre-nilpotent module, perfect module
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society