Prime knots and tangles
Author:
W. B. Raymond Lickorish
Journal:
Trans. Amer. Math. Soc. 267 (1981), 321332
MSC:
Primary 57M25; Secondary 57M12
MathSciNet review:
621991
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A study is made of a method of proving that a classical knot or link is prime. The method consists of identifying together the boundaries of two prime tangles. Examples and ways of constructing prime tangles are explored.
 [B]
F. Bonahon (to appear).
 [C]
J.
H. Conway, An enumeration of knots and links, and some of their
algebraic properties, Computational Problems in Abstract Algebra
(Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970,
pp. 329–358. MR 0258014
(41 #2661)
 [GL]
J. C. Gómez Larrańaga, Knot primeness, Doctoral Dissertation, Cambridge University, 1981.
 [Gk]
Richard
E. Goodrick, Nonsimplicially collapsible triangulations of
𝐼ⁿ, Proc. Cambridge Philos. Soc. 64
(1968), 31–36. MR 0220272
(36 #3338)
 [Gn]
JeanClaude
Hausmann (ed.), Knot theory, Lecture Notes in Mathematics,
vol. 685, SpringerVerlag, BerlinNew York, 1978. MR 0645392
(58 #31084)
 [HT]
A. Hatcher and W. Thurston, Incompressible surfaces in bridge knot complements (to appear).
 [Jo]
William
Jaco, Lectures on threemanifold topology, CBMS Regional
Conference Series in Mathematics, vol. 43, American Mathematical
Society, Providence, R.I., 1980. MR 565450
(81k:57009)
 [Jn]
Klaus
Johannson, Homotopy equivalences of 3manifolds with
boundaries, Lecture Notes in Mathematics, vol. 761, Springer,
Berlin, 1979. MR
551744 (82c:57005)
 [KT]
Paik
Kee Kim and Jeffrey
L. Tollefson, Splitting the PL involutions of nonprime
3manifolds, Michigan Math. J. 27 (1980), no. 3,
259–274. MR
584691 (81m:57007)
 [K]
Rob
Kirby, Problems in low dimensional manifold theory, Algebraic
and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford,
Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc.,
Providence, R.I., 1978, pp. 273–312. MR 520548
(80g:57002)
 [KL]
Robion
C. Kirby and W.
B. Raymond Lickorish, Prime knots and concordance, Math. Proc.
Cambridge Philos. Soc. 86 (1979), no. 3,
437–441. MR
542689 (80k:57011), http://dx.doi.org/10.1017/S0305004100056280
 [L]
Charles
Livingston, Homology cobordisms of 3manifolds, knot concordances,
and prime knots, Pacific J. Math. 94 (1981),
no. 1, 193–206. MR 625818
(83e:57008)
 [M]
W. Menasco, Incompressible surfaces in the complement of alternating knots and links (to appear).
 [P1]
K. A. Perko, A weak bridged knot with at most three bridges is prime, Notices Amer. Math. Soc. 26 (1978), A648 (and a preprint).
 [P2]
, Invariants of elevencrossing knots (to appear).
 [S]
Horst
Schubert, Über eine numerische Knoteninvariante, Math. Z.
61 (1954), 245–288 (German). MR 0072483
(17,292a)
 [W]
Friedhelm
Waldhausen, Über Involutionen der 3Sphäre, Topology
8 (1969), 81–91 (German). MR 0236916
(38 #5209)
 [B]
 F. Bonahon (to appear).
 [C]
 J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, Oxford and New York, 1969, pp. 329358. MR 0258014 (41:2661)
 [GL]
 J. C. Gómez Larrańaga, Knot primeness, Doctoral Dissertation, Cambridge University, 1981.
 [Gk]
 R. E. Goodrick, Nonsimplicially collapsible triangluations on , Proc. Cambridge Philos. Soc. 64 (1968), 3136. MR 0220272 (36:3338)
 [Gn]
 C. McA. Gordon, Problems in knot theory, Knot Theory Proceedings (PlanssurBex, 1977), Lecture Notes in Math., vol. 685, SpringerVerlag, Berlin and New York, 1978, pp. 309311. MR 0645392 (58:31084)
 [HT]
 A. Hatcher and W. Thurston, Incompressible surfaces in bridge knot complements (to appear).
 [Jo]
 W. Jaco, Lectures on threemanifold topology, CBMS Regional Conf. Ser. in Math., Number 43, Amer. Math. Soc., Providence, R. I., 1980. MR 565450 (81k:57009)
 [Jn]
 K. Johannson, Homotopy equivalences of manifolds with boundaries, Lecture Notes in Math., vol. 761, SpringerVerlag, Berlin and New York, 1979. MR 551744 (82c:57005)
 [KT]
 P. K. Kim and J. L. Tollefson, Splitting the P.L. involutions of nonprime manifolds, Michigan Math. J. 27 (1980), 259274. MR 584691 (81m:57007)
 [K]
 R. Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 273312. MR 520548 (80g:57002)
 [KL]
 R. C. Kirby and W. B. R. Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979), 437441. MR 542689 (80k:57011)
 [L]
 C. Livingston, Homology cobordisms of manifolds, knot concordances, and prime knots, Pacific J. Math. (to appear). MR 625818 (83e:57008)
 [M]
 W. Menasco, Incompressible surfaces in the complement of alternating knots and links (to appear).
 [P1]
 K. A. Perko, A weak bridged knot with at most three bridges is prime, Notices Amer. Math. Soc. 26 (1978), A648 (and a preprint).
 [P2]
 , Invariants of elevencrossing knots (to appear).
 [S]
 H. Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954), 245288. MR 0072483 (17:292a)
 [W]
 F. Waldhausen, Über Involutionen der Sphäre, Topology 8 (1969), 8191. MR 0236916 (38:5209)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
57M25,
57M12
Retrieve articles in all journals
with MSC:
57M25,
57M12
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198106219912
PII:
S 00029947(1981)06219912
Keywords:
Prime knot,
tangle,
branched cover,
irreducible manifold
Article copyright:
© Copyright 1981
American Mathematical Society
