On the analogues of some transformations of nearlypoised hypergeometric series
Authors:
B. Nassrallah and Mizan Rahman
Journal:
Trans. Amer. Math. Soc. 268 (1981), 211229
MSC:
Primary 33A30
MathSciNet review:
628455
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A number of transformation formulas for very wellpoised basic hypergeometric series have been obtained which, in the limit , approach the known transformation formulas for nearlypoised ordinary hypergeometric series.
 [1]
R.
P. Agarwal and Arun
Verma, Generalized basic hypergeometric series with unconnected
bases, Proc. Cambridge Philos. Soc. 63 (1967),
727–734. MR 0212216
(35 #3090)
 [2]
George
E. Andrews, Applications of basic hypergeometric functions,
SIAM Rev. 16 (1974), 441–484. MR 0352557
(50 #5044)
 [3]
George
E. Andrews, Problems and prospects for basic hypergeometric
functions, Theory and application of special functions (Proc. Advanced
Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic
Press, New York, 1975, pp. 191–224. Math. Res. Center, Univ.
Wisconsin, Publ. No. 35. MR 0399528
(53 #3372)
 [4]
George
E. Andrews, The theory of partitions, AddisonWesley
Publishing Co., Reading, Mass.LondonAmsterdam, 1976. Encyclopedia of
Mathematics and its Applications, Vol. 2. MR 0557013
(58 #27738)
 [5]
George
E. Andrews and Richard
Askey, Classical orthogonal polynomials, Orthogonal
polynomials and applications (BarleDuc, 1984) Lecture Notes in Math.,
vol. 1171, Springer, Berlin, 1985, pp. 36–62. MR 838970
(88c:33015b), http://dx.doi.org/10.1007/BFb0076530
 [6]
Richard
Askey and James
Wilson, A set of orthogonal polynomials that generalize the Racah
coefficients or 6𝑗 symbols, SIAM J. Math. Anal.
10 (1979), no. 5, 1008–1016. MR 541097
(80k:33012), http://dx.doi.org/10.1137/0510092
 [7]
R. Askey and M. E. H. Ismail, A generalization of ultraspherical polynomials, Technical summary report #1851, Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1978.
 [8]
W.
N. Bailey, Generalized hypergeometric series, Cambridge Tracts
in Mathematics and Mathematical Physics, No. 32, StechertHafner, Inc., New
York, 1964. MR
0185155 (32 #2625)
 [9]
W.
N. Bailey, A transformation of nearlypoised basic hypergeometric
series, J. London Math. Soc. 22 (1947), 237–240
(1948). MR
0023964 (9,432a)
 [10]
L.
Carlitz, Some formulas of F. H. Jackson, Monatsh. Math.
73 (1969), 193–198. MR 0248035
(40 #1290)
 [11]
Mizan
Rahman, A nonnegative representation of the linearization
coefficients of the product of Jacobi polynomials, Canad. J. Math.
33 (1981), no. 4, 915–928. MR 634149
(83i:33007a), http://dx.doi.org/10.4153/CJM19810729
 [12]
, The linearization of the product of continuous Jacobi polynomials, Canad. J. Math. (to appear).
 [13]
Lucy
Joan Slater, Generalized hypergeometric functions, Cambridge
University Press, Cambridge, 1966. MR 0201688
(34 #1570)
 [14]
Arun
Verma, A quadratic transformation of a basic hypergeometric
series, SIAM J. Math. Anal. 11 (1980), no. 3,
425–427. MR
572192 (81f:33005), http://dx.doi.org/10.1137/0511039
 [15]
F. J. W. Whipple, Some transformations of generalized hypergeometric series, Proc. London Math. Soc. (2) 26 (1927), 257272.
 [1]
 R. P. Agarwal and A. Verma, Generalized basic hypergeometric series with unconnected bases, Proc. Cambridge Philos. Soc. 63 (1967), 727734. MR 0212216 (35:3090)
 [2]
 G. E. Andrews, Applications of basic hypergeometric series, SIAM Rev. 16 (1974), 441484. MR 0352557 (50:5044)
 [3]
 , Problems and prospects for basic hypergeometric functions, Theory and Applications of Special Functions (Richard A. Askey, Editor), Academic Press, New York, 1975. MR 0399528 (53:3372)
 [4]
 , The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, AddisonWesley, Reading, Mass., 1977. MR 0557013 (58:27738)
 [5]
 G. E. Andrews and R. Askey, analogues of the classical orthogonal polynomials and applications (to appear). MR 838970 (88c:33015b)
 [6]
 R. Askey and J. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or 6 symbols, SIAM J. Math. Anal. 10 (1979), 10081016. MR 541097 (80k:33012)
 [7]
 R. Askey and M. E. H. Ismail, A generalization of ultraspherical polynomials, Technical summary report #1851, Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1978.
 [8]
 W. N. Bailey, Generalized hypergeometric series, StechertHafner Service Agency, New York, 1964. MR 0185155 (32:2625)
 [9]
 , Transformation of nearlypoised basic hypergeometric series, J. London Math. Soc. 22 (1947), 237240. MR 0023964 (9:432a)
 [10]
 L. Carlitz, Some formulas of F. H. Jackson, Monatsh. Math. 73 (1969), 193198. MR 0248035 (40:1290)
 [11]
 Mizan Rahman, A nonnegative representation of the linearization coefficients of the product of Jacobi polynomials, Canad. J. Math. (to appear). MR 634149 (83i:33007a)
 [12]
 , The linearization of the product of continuous Jacobi polynomials, Canad. J. Math. (to appear).
 [13]
 L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 0201688 (34:1570)
 [14]
 Arun Verma, A quadratic transformation of a basic hypergeometric series, SIAM J. Math. Anal. 11 (1980), 425427. MR 572192 (81f:33005)
 [15]
 F. J. W. Whipple, Some transformations of generalized hypergeometric series, Proc. London Math. Soc. (2) 26 (1927), 257272.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
33A30
Retrieve articles in all journals
with MSC:
33A30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198106284550
PII:
S 00029947(1981)06284550
Keywords:
Basic hypergeometric series,
bibasic series,
very wellpoised series,
nearlypoised series transformations
Article copyright:
© Copyright 1981
American Mathematical Society
