Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves


Author: Walter D. Neumann
Journal: Trans. Amer. Math. Soc. 268 (1981), 299-344
MSC: Primary 32B30; Secondary 14J17, 32J15, 57N10
MathSciNet review: 632532
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Any graph-manifold can be obtained by plumbing according to some plumbing graph $ \Gamma $. A calculus for plumbing which includes normal forms for such graphs is developed. This is applied to answer several questions about the topology of normal complex surface singularities and analytic families of complex curves. For instance it is shown that the topology of the minimal resolution of a normal complex surface singularity is determined by the link of the singularity and even by its fundamental group if the singularity is not a cyclic quotient singularity or a cusp singularity.


References [Enhancements On Off] (What's this?)

  • [1] F. Bonahon and L. Siebenmann, Les noeuds algébriques (in preparation).
  • [2] P. E. Conner and Frank Raymond, Injective operations of the toral groups, Topology 10 (1971), 283–296. MR 0281218
  • [3] D. Eisenbud and W. Neumann, Fibering iterated torus links, preprint, 1978; rev. ed., Toral links and plane curve singularities (in preparation).
  • [4] -, Graph links (in preparation).
  • [5] Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 0137127
  • [6] Friedrich E. P. Hirzebruch, Hilbert modular surfaces, Enseignement Math. (2) 19 (1973), 183–281. MR 0393045
  • [7] F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau; Lecture Notes in Pure and Applied Mathematics, Vol. 4. MR 0341499
  • [8] M. Inoue, New surfaces with no meromorphic functions. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 91–106. MR 0442297
  • [9] Ulrich Karras, Klassifikation 2-dimensionaler Singularitäten mit auflösbaren lokalen Fundamentalgruppen, Math. Ann. 213 (1975), 231–255 (German). MR 0379894
  • [10] Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
  • [11] Robion Kirby, A calculus for framed links in 𝑆³, Invent. Math. 45 (1978), no. 1, 35–56. MR 0467753
  • [12] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626.
  • [13] W. D. Neumann, $ {S^1}$-actions and the $ \alpha $-invariant of their involutions, Bonner Math. Schriften, vol. 44, Bonn, 1970.
  • [14] -, Fibering graph manifolds (in preparation).
  • [15] Walter D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125–144. MR 585657
  • [16] Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, 𝜇-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
  • [17] Walter D. Neumann and Steven H. Weintraub, Four-manifolds constructed via plumbing, Math. Ann. 238 (1978), no. 1, 71–78. MR 510309, 10.1007/BF01351456
  • [18] Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
  • [19] Peter Orlik and Frank Raymond, Actions of 𝑆𝑂(2) on 3-manifolds, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 297–318. MR 0263112
  • [20] P. Orlik, E. Vogt, and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49–64 (German). MR 0212831
  • [21] Alois Scharf, Zur Faserung von Graphenmannigfaltigkeiten, Math. Ann. 215 (1975), 35–45 (German). MR 0377918
  • [22] Rabe von Randow, Zur Topologie von dreidimensionalen Baummannigfaltigkeiten, Bonn. Math. Schr. No. 14 (1962), v+131 (German). MR 0155304
  • [23] Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51–72. MR 0285536
  • [24] Friedhelm Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308–333; ibid. 4 (1967), 87–117 (German). MR 0235576
  • [25] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 0224099
  • [26] Gayn B. Winters, On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215–228. MR 0357406

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32B30, 14J17, 32J15, 57N10

Retrieve articles in all journals with MSC: 32B30, 14J17, 32J15, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0632532-8
Keywords: Complex surface singularity, resolution, degenerating family of curves, graph manifold, plumbing
Article copyright: © Copyright 1981 American Mathematical Society