Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves


Author: Walter D. Neumann
Journal: Trans. Amer. Math. Soc. 268 (1981), 299-344
MSC: Primary 32B30; Secondary 14J17, 32J15, 57N10
DOI: https://doi.org/10.1090/S0002-9947-1981-0632532-8
MathSciNet review: 632532
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Any graph-manifold can be obtained by plumbing according to some plumbing graph $ \Gamma $. A calculus for plumbing which includes normal forms for such graphs is developed. This is applied to answer several questions about the topology of normal complex surface singularities and analytic families of complex curves. For instance it is shown that the topology of the minimal resolution of a normal complex surface singularity is determined by the link of the singularity and even by its fundamental group if the singularity is not a cyclic quotient singularity or a cusp singularity.


References [Enhancements On Off] (What's this?)

  • [1] F. Bonahon and L. Siebenmann, Les noeuds algébriques (in preparation).
  • [2] P. E. Conner and F. Raymond, Injective actions of toral groups, Topology 10 (1971), 283-296. MR 0281218 (43:6937)
  • [3] D. Eisenbud and W. Neumann, Fibering iterated torus links, preprint, 1978; rev. ed., Toral links and plane curve singularities (in preparation).
  • [4] -, Graph links (in preparation).
  • [5] H. Grauert, Über Modifikationen und exceptionelle analytische Raumformen, Math. Ann. 146 (1962), 331-368. MR 0137127 (25:583)
  • [6] F. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183-281. MR 0393045 (52:13856)
  • [7] F. Hirzebruch, W. D. Neumann and S. S. Koh, Differentiable manifolds and quadratic forms, Math. Lecture Notes, vol. 4, Dekker, New York, 1972. MR 0341499 (49:6250)
  • [8] M. Inoue, New surfaces with no meromorphic functions. II, Complex Analysis and Algebraic Geometry, A Collection of Papers Dedicated to K. Kodaira, (W. L. Baily, Jr. and T. Schioda, eds.), Cambridge Univ. Press, Tokyo and Cambridge, 1977, pp. 91-106. MR 0442297 (56:683)
  • [9] U. Karras, Klassifikation $ 2$-dimensionaler Singularitäten mit auflösbaren lokalen Fundamentalgruppen, Math. Ann. 213 (1975), 231-255. MR 0379894 (52:799)
  • [10] R. Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc, Providence, R. I., 1978, pp. 351-365. MR 520548 (80g:57002)
  • [11] -, A calculus for framed links in $ {S^3}$, Invent. Math. 45 (1978), 35-56. MR 0467753 (57:7605)
  • [12] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626.
  • [13] W. D. Neumann, $ {S^1}$-actions and the $ \alpha $-invariant of their involutions, Bonner Math. Schriften, vol. 44, Bonn, 1970.
  • [14] -, Fibering graph manifolds (in preparation).
  • [15] -, An invariant of plumbed homology spheres, Proc. Internat. Topology Sympos. (Siegen, 1979), Lecture Notes in Math., vol. 788, Springer-Verlag, Berlin and New York, 1980, pp. 125-144. MR 585657 (82j:57033)
  • [16] W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, $ \mu $-invariant and orientation reversing maps, Proc. Alg. and Geom. Topology (Santa Barbara, 1977), Lecture Notes in Math., vol. 644, Springer-Verlag, Berlin and New York, 1978, pp. 163-196. MR 518415 (80e:57008)
  • [17] W. D. Neumann and S. Weintraub, Four-manifolds constructed via plumbing, Math. Ann. 238 (1978), 71-78. MR 510309 (80g:57047)
  • [18] P. Orlik, Seifert fiber spaces, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972. MR 0426001 (54:13950)
  • [19] P. Orlik and F. Raymond, Actions of $ SO(2)$ on $ 3$-manifolds, Proc. Conf. on Transformation Groups (New Orleans, 1967), Springer-Verlag, New York, 1968, pp. 297-318. MR 0263112 (41:7717)
  • [20] P. Orlik, E. Vogt and H. Zeischang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. MR 0212831 (35:3696)
  • [21] A. Scharf, Faserungen von Graphenmannigfaltigkeiten, Dissertation, Bonn, 1973; summarized, Math. Ann. 215 (1975), 35-45. MR 0377918 (51:14087)
  • [22] R. Von Randow, Zur Topologie von drei-dimensionalen Baummannigfaltigkeiten, Bonner Math. Schriften, vol. 14, Bonn, 1962. MR 0155304 (27:5239)
  • [23] P. Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51-72. MR 0285536 (44:2754)
  • [24] F. Waldhausen, Eine Klasse von $ 3$-dimensionalen Mannigfaltigkeiten, Invent. Math. 3 (1967), 308-333; 4 (1967), 87-117. MR 0235576 (38:3880)
  • [25] -, On irreducible $ 3$-manifolds that are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [26] G. B. Winters, On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215-228. MR 0357406 (50:9874)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32B30, 14J17, 32J15, 57N10

Retrieve articles in all journals with MSC: 32B30, 14J17, 32J15, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0632532-8
Keywords: Complex surface singularity, resolution, degenerating family of curves, graph manifold, plumbing
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society