Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geodesic rigidity in compact nonpositively curved manifolds


Author: Patrick Eberlein
Journal: Trans. Amer. Math. Soc. 268 (1981), 411-443
MSC: Primary 53C20
DOI: https://doi.org/10.1090/S0002-9947-1981-0632536-5
MathSciNet review: 632536
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Our goal is to find geometric properties that are shared by homotopically equivalent compact Riemannian manifolds of sectional curvature $ K \leqslant 0$. In this paper we consider mainly properties of free homotopy classes of closed curves. Each free homotopy class is represented by at least one smooth periodic geodesic, and the nonpositive curvature condition implies that any two periodic geodesic representatives are connected by a flat totally geodesic homotopy of periodic geodesic representatives. By imposing certain geometric conditions on these periodic geodesic representatives we define and study three types of free homotopy classes: Clifford, bounded and rank $ 1$. Let $ M$, $ M\prime $ denote compact Riemannian manifolds with $ K \leqslant 0$, and let $ \theta :{\pi _1}(M,\,m) \to {\pi _1}(M\prime ,\,m\prime )$ be an isomorphism. Let $ \theta $ also denote the induced bijection on free homotopy classes.

Theorem A. The free homotopy class $ [\alpha ]$ in $ M$ is, respectively, Clifford, bounded or rank $ 1$ if and only if the class $ \theta [\alpha ]$ in $ M\prime $ is of the same type.

Theorem B. If $ M$, $ M\prime $ have dimension $ 3$ and do not have a rank $ 1$ free homotopy class then they have diffeomorphic finite covers of the form $ {S^1} \times {M^2}$. The proofs of Theorems A and B use the fact that $ \theta $ is induced by a homotopy equivalence $ f:(M,\,m) \to (M\prime ,\,m\prime )$.

Theorem C. The manifold $ M$ satisfies the Visibility axiom if and only if $ M\prime $ satisfies the Visibility axiom.


References [Enhancements On Off] (What's this?)

  • [1] W. Ballmann, Dissertation, University of Bonn, 1978, and Bonner Math. Schriften, vol. 113, 1978. MR 520178 (80d:58017)
  • [2] R. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. MR 0251664 (40:4891)
  • [3] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122. MR 0146301 (26:3823)
  • [4] S. Chen, Weak rigidity of compact negatively curved manifolds, Pacific J. Math. 78 (1978), 273-278. MR 519752 (80c:53059)
  • [5] S. Chen and P. Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature, Illinois J. Math. 24 (1980), 73-103. MR 550653 (82k:53052)
  • [6] P. Eberlein, A canonical form for compact nonpositively curved manifolds whose fundamental groups have nontrivial center (submitted).
  • [7] -, Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc. 167 (1972), 151-170. MR 0295387 (45:4453)
  • [8] -, Geodesic rigidity in compact nonpositively curved manifolds. II (in preparation).
  • [9] -, Lattices in spaces of nonpositive curvature, Ann. of Math. (2) 111 (1980), 435-476. MR 577132 (82m:53040)
  • [10] -, Surfaces of nonpositive curvature, Mem. Amer. Math. Soc. No. 218 (1979). MR 533654 (80j:53044)
  • [11] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-109. MR 0336648 (49:1421)
  • [12] W. Fenchel and J. Nielsen, Discontinuous groups of non-Euclidean motions (to appear).
  • [13] D. Gromoll and J. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545-552. MR 0281122 (43:6841)
  • [14] M. Gromov, Three remarks on geodesic dynamic and fundamental group (preprint). MR 1805410 (2002k:53166)
  • [15] -, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230. MR 540941 (80h:53040)
  • [16] E. Heintze, Mannigfaltigkeiten negativer Krummung, Habilitationschrift, University of Bonn, 1976. MR 1940403 (2003m:53056)
  • [17] W. Klingenberg, Geodatischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ, Invent. Math. 14 (1971), 63-82. MR 0296975 (45:6034)
  • [18] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Wiley, New York, 1963, pp. 179-193.
  • [19] H. B. Lawson and S.-T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geom. 7 (1972), 211-228. MR 0334083 (48:12402)
  • [20] A. Marden, Isomorphisms between Fuchsian groups, Lecture Notes in Math., vol. 505, Springer-Verlag, Berlin and New York, 1978, pp. 56-78. MR 0412414 (54:540)
  • [21] M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924), 25-60. MR 1501263
  • [22] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math Studies, No. 78, Princeton Univ. Press, Princeton, N. J., 1973. MR 0385004 (52:5874)
  • [23] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972. MR 0507234 (58:22394a)
  • [24] H. Shimizu, On discontinuous groups operating on the product of upper half planes, Ann. of Math. (2) 77 (1963), 33-71. MR 0145106 (26:2641)
  • [25] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [26] N. Steenrod, The topology of fiber bundles, Princeton Univ. Press, Princeton, N. J., 1951. MR 0039258 (12:522b)
  • [27] J. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois J. Math. 8 (1964), 14-18. MR 0163262 (29:565)
  • [28] -, Spaces of constant curvature, 2nd ed., published by the author, Berkeley, Calif., 1972.
  • [29] S.-T. Yau, On the fundamental group of compact manifolds of nonpositive curvature, Ann. of Math. (2) 93 (1971), 579-585. MR 0283726 (44:956)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C20

Retrieve articles in all journals with MSC: 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0632536-5
Keywords: Nonpositive curvature, free homotopy class, periodic geodesic, homotopy equivalence, rank $ 1$, Visibility axiom
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society