Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On the monodromy at isolated singularities of weighted homogeneous polynomials


Author: Benjamin G. Cooper
Journal: Trans. Amer. Math. Soc. 269 (1982), 149-166
MSC: Primary 32C40; Secondary 14B05
MathSciNet review: 637033
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assume $ f:{{\mathbf{C}}^m} \to {\mathbf{C}}$ is a weighted homogeneous polynomial with isolated singularity, and define $ \phi :{S^{2m - 1}} - {f^{ - 1}}(0) \to {S^1}$ by $ \phi (\overrightarrow z ) = f(\overrightarrow z ) / \vert f(\overrightarrow z )\vert$. If the monomials of $ f$ are algebraically independent, then the closure $ {\overline F _0}$ of $ {\phi ^{ - 1}}(1)$ in $ {S^{2m - 1}}$ admits a deformation into the subset $ G$ where each monomial of $ f$ has nonnegative real values. For the polynomial $ f({z_1}, \ldots ,{z_m}) = z_1^{{a_1}}{z_2} + \cdots + z_{m - 1}^{{a_{m - 1}}}{z_m} + z_m^{{a_m}}{z_1}$, $ G$ is a cell complex of dimension $ m - 1$, invariant under a characteristic map $ h$ of the fibration $ \phi $, and the inclusion $ G \to {F_0}$ induces isomorphisms in homology. To compute the homology of the link $ K = {f^{ - 1}}(0) \cap {S^{2m - 1}}$ it thus suffices to calculate the action of $ {h_{\ast}}$ on $ {H_{m - 1}}(G)$. Let $ d = {a_1}{a_2} \cdots {a_m} + {( - 1)^{m - 1}}$. Let $ {w_1},\,{w_2}, \ldots ,{w_m}$ be the weights associated with $ f$, satisfying $ {a_j} / {w_j} + 1 / {w_{j + 1}} = 1$ for $ j = 1,\,2, \ldots ,\,m - 1$ and $ {a_m}/{w_m} + 1/{w_1} = 1$. Let $ n = d/{w_1}$, $ q = \gcd (n,\,d)$, $ r = q + {( - 1)^m}$. Then $ {H_{m - 2}}(K) = {Z^r} \oplus {z_{d/q}}$ and $ {H_{m - 1}}(K) = {Z^r}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C40, 14B05

Retrieve articles in all journals with MSC: 32C40, 14B05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1982-0637033-X
PII: S 0002-9947(1982)0637033-X
Keywords: Isolated singularity, weighted homogeneous polynomial, Milnor fibre, monodromy
Article copyright: © Copyright 1982 American Mathematical Society