Curvature operators and characteristic classes
Author:
Irl Bivens
Journal:
Trans. Amer. Math. Soc. 269 (1982), 301310
MSC:
Primary 53C21; Secondary 57R20
MathSciNet review:
637040
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Given tensors and of type on a Riemannian manifold we construct in a natural way a form . If and satisfy the generalized Codazzi equations then this form is closed. In particular if denotes the th curvature operator then is (up to a constant multiple) the th Pontrjagin class of . By means of a theorem of Gilkey we give conditions sufficient to guarantee that a form constructed from more complicated expressions involving the curvature operators does in fact belong to the Pontrjagin algebra. As a corollary we obtain Thorpe's vanishing theorem for manifolds with constant th sectional curvature. If at each point in the tangent space contains a subspace of a particular type (similar to curvature nullity) we show that certain Pontrjagin classes must vanish. We generalize the result that submanifolds of Euclidean space with flat normal bundle have a trivial Pontrjagin algebra. The curvature operator, , is interesting in that the components of with respect to any orthonormal frame are given by certain universal (independent of frame) homogeneous linear polynomials in the components of the curvature tensor. We characterize all such operators and using this characterization derive in a natural way the Weyl component of .
 [1]
M.
Atiyah, R.
Bott, and V.
K. Patodi, On the heat equation and the index theorem, Invent.
Math. 19 (1973), 279–330. MR 0650828
(58 #31287)
 [2]
Shiingshen
Chern, On curvature and characteristic classes of a Riemann
manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955),
117–126. MR 0075647
(17,783e)
 [3]
Shiingshen
Chern and Nicolaas
H. Kuiper, Some theorems on the isometric imbedding of compact
Riemann manifolds in euclidean space, Ann. of Math. (2)
56 (1952), 422–430. MR 0050962
(14,408e)
 [4]
Yukkeung
Cheung and Chuanchih
Hsiung, Curvature and characteristic classes of compact Riemannian
manifolds, J. Differential Geometry 1 (1967),
no. 1, 89–97. MR 0217738
(36 #827)
 [5]
Luther
Pfahler Eisenhart, Riemannian Geometry, Princeton University
Press, Princeton, N. J., 1949. 2d printing. MR 0035081
(11,687g)
 [6]
Alfred
Gray, Some relations between curvature and characteristic
classes, Math. Ann. 184 (1969/1970), 257–267.
MR
0261492 (41 #6105)
 [7]
Ravindra
S. Kulkarni, On the Bianchi Identities, Math. Ann.
199 (1972), 175–204. MR 0339004
(49 #3767)
 [8]
I.
M. Singer and J.
A. Thorpe, The curvature of 4dimensional Einstein spaces,
Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo,
1969, pp. 355–365. MR 0256303
(41 #959)
 [9]
Ann
Stehney, Courbure d’ordre 𝑝 et les classes de
Pontrjagin, J. Differential Geometry 8 (1973),
125–134 (French). MR 0362333
(50 #14775)
 [10]
John
A. Thorpe, Sectional curvatures and characteristic classes,
Ann. of Math. (2) 80 (1964), 429–443. MR 0170308
(30 #546)
 [1]
 M. Atiyah, R. Bott and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279330. MR 0650828 (58:31287)
 [2]
 S. S. Chern, On the curvature and characteristic classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg 20 (1956), 117126. MR 0075647 (17:783e)
 [3]
 S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math. (2) 56 (1952), 422430. MR 0050962 (14:408e)
 [4]
 Y. K. Cheung and C. C. Hsiung, Curvature and characteristic classes of compact Riemannian manifolds, J. Differential Geom. 1 (1967), 8997. MR 0217738 (36:827)
 [5]
 L. P. Eisenhart, Riemannian geometry, Princeton Univ. Press, Princeton, N. J., 1949. MR 0035081 (11:687g)
 [6]
 A. Gray, Some relations between curvature and characteristic classes, Math. Ann. 184 (1969), 257267. MR 0261492 (41:6105)
 [7]
 R. S. Kulkarni, On the Bianchi identities, Math. Ann. 199 (1972), 175204. MR 0339004 (49:3767)
 [8]
 I. M. Singer and J. A. Thorpe, The curvature of dimensional Einstein spaces, Global Analysis, Papers in Honor of K. Kodaira (D. C. Spencer and S. Iyanaga, editors), Princeton Univ. Press, Princeton, N. J., 1969, pp. 355365. MR 0256303 (41:959)
 [9]
 A. Stehney, Courbure d'ordre p et les classes de Pontrjagin, J. Differential Geom. 8 (1973), 125133. MR 0362333 (50:14775)
 [10]
 J. Thorpe, Sectional curvature and characteristic classes, Ann. of Math. (2) 80 (1964), 429443. MR 0170308 (30:546)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
53C21,
57R20
Retrieve articles in all journals
with MSC:
53C21,
57R20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198206370407
PII:
S 00029947(1982)06370407
Article copyright:
© Copyright 1982
American Mathematical Society
