Ramsey numbers for the pair sparse graph-path or cycle

Authors:
S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp

Journal:
Trans. Amer. Math. Soc. **269** (1982), 501-512

MSC:
Primary 05C55

DOI:
https://doi.org/10.1090/S0002-9947-1982-0637704-5

MathSciNet review:
637704

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a connected graph on vertices with no more than edges, and or a path or cycle with vertices. In this paper we will show that if is sufficiently large and is sufficiently small then for odd

**[1]**J. A. Bondy and P. Erdös,*Ramsey numbers for cycles in graphs*, J. Combin. Theory Ser. B**14**(1973), 46-54. MR**0317991 (47:6540)****[2]**S. A. Burr,*Generalized Ramsey theory for graphs--a survey*, Graphs and Combinatorics, Lecture Notes in Math., vol. 406, Springer-Verlag, Berlin and New York, 1974, pp. 52-75. MR**0379210 (52:116)****[3]**-,*Ramsey numbers involving graphs with long suspended paths*, J. London Math. Soc. (to appear).**[4]**S. A. Burr, P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp,*An extremal problem in generalized Ramsey theory*, Ars Combinatoria**10**(1980), 193-203. MR**598912 (82b:05096)****[5]**V. Chvátal,*Tree-complete graph Ramsey numbers*, J. Graph Theory**1**(1977), 93. MR**0465920 (57:5806)****[6]**R. J. Faudree, S. L. Lawrence, T. D. Parsons and R. H. Schelp,*Path-cycle Ramsey numbers*, Discrete Math.**10**(1974), 269-277. MR**0357195 (50:9663)****[7]**L. Gerencsér and A. Gyárfas,*On Ramsey-type problems*, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.**10**(1967), 67-70. MR**0239997 (39:1351)****[8]**P. Hall,*On representatives of subsets*, J. London Math. Soc.**10**(1935), 26-30.**[9]**F. Harary,*Graph theory*, Addison-Wesley, Reading, Mass., 1969. MR**0256911 (41:1566)****[10]**T. D. Parsons,*Path-star Ramsey numbers*, J. Combin. Theory Ser. B**17**(1974), 51-58. MR**0382069 (52:2957)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05C55

Retrieve articles in all journals with MSC: 05C55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0637704-5

Article copyright:
© Copyright 1982
American Mathematical Society