Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Congruences between systems of eigenvalues of modular forms


Author: Naomi Jochnowitz
Journal: Trans. Amer. Math. Soc. 270 (1982), 269-285
MSC: Primary 10D12
MathSciNet review: 642341
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We modify and generalize proofs of Tate and Serre in order to show that there are only a finite number of systems of eigenvalues for the Hecke operators with respect to $ {\Gamma _0}(N)\bmod l$. We also summarize results for $ {\Gamma _1}(N)$.

Using these results, we show that an arbitrary prime divides the discriminant of the classical Hecke ring to a power which grows linearly with $ k$. In this way, we find a lower bound for the discriminant of the Hecke ring. After limiting ourselves to cusp forms, we also find an upper bound.

Lastly we use the constructive nature of Tate and Serre's result to describe the structure and dimensions of the generalized eigenspaces for the Hecke operators $ \bmod l$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Algèbre, Chap. 8.
  • [2] Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 0340258 (49 #5013)
  • [3] M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 75–151. Lecture Notes in Math., Vol. 320. MR 0485698 (58 #5521a)
  • [4] Naomi Jochnowitz, The index of the Hecke ring, 𝑇_{𝑘}, in the ring of integers of 𝑇_{𝑘}⊗𝑄, Duke Math. J. 46 (1979), no. 4, 861–869. MR 552529 (80k:10023)
  • [5] Naomi Jochnowitz, A study of the local components of the Hecke algebra mod 𝑙, Trans. Amer. Math. Soc. 270 (1982), no. 1, 253–267. MR 642340 (83e:10033a), http://dx.doi.org/10.1090/S0002-9947-1982-0642340-0
  • [6] -, Congruences between systems of eigenvalues and implications for the Hecke algebra, Harvard Ph.D. Thesis, November, 1976.
  • [7] Nicholas M. Katz, 𝑝-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 69–190. Lecture Notes in Mathematics, Vol. 350. MR 0447119 (56 #5434)
  • [8] -, A result on modular forms in characteristic $ p$, Lecture Notes in Math., vol. 601, Springer-Verlag, Berlin and New York, 1976, pp. 53-61.
  • [9] Peter George Kluit, Hecke operators on Γ*(𝑁) and their traces, Vrije Universiteit te Amsterdam, Amsterdam, 1979. With a computer-aided study of low genus 𝑋*(𝑁); Dissertation, Vrije Universiteit, Amsterdam, 1979; With a Dutch summary. MR 591854 (81k:10039)
  • [10] Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740 (55 #2751)
  • [11] V. Miller, Diophantine and $ p$-adic analysis of elliptic curves and modular forms, Ph.D. Thesis, Harvard, June 1975.
  • [12] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766 (47 #3318)
  • [13] Jean-Pierre Serre, Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer], Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Springer, Berlin, 1973, pp. 319–338. Lecture Notes in Math., Vol. 317 (French). MR 0466020 (57 #5904a)
  • [14] Jean-Pierre Serre, Formes modulaires et fonctions zêta 𝑝-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 191–268. Lecture Notes in Math., Vol. 350 (French). MR 0404145 (53 #7949a)
  • [15] H. P. F. Swinnerton-Dyer, On 𝑙-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 1–55. Lecture Notes in Math., Vol. 350. MR 0406931 (53 #10717a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10D12

Retrieve articles in all journals with MSC: 10D12


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1982-0642341-2
PII: S 0002-9947(1982)0642341-2
Article copyright: © Copyright 1982 American Mathematical Society