Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Structure theory for a class of grade four Gorenstein ideals


Authors: Andrew Kustin and Matthew Miller
Journal: Trans. Amer. Math. Soc. 270 (1982), 287-307
MSC: Primary 13C13; Secondary 13H10, 16A03
DOI: https://doi.org/10.1090/S0002-9947-1982-0642342-4
MathSciNet review: 642342
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An ideal $ I$ in a commutative noetherian ring $ R$ is a Gorenstein ideal of $ \operatorname{grade} g$ if $ {\operatorname{pd} _R}(R / I) = \operatorname{grade} \,I = g$ and the canonical module $ \operatorname{Ext} _R^g(R / I,\,R)$ is cyclic. Serre showed that if $ g = 2$ then $ I$ is a complete intersection, and Buchsbaum and Eisenbud proved a structure theorem for the case $ g = 3$. We present generic resolutions for a class of Gorenstein ideals of $ \operatorname{grade} 4$, and we illustrate the structure of the resolution with various specializations. Among these examples there are Gorenstein ideals of $ \operatorname{grade} \,4$ in $ k[[x,\,y,\,z,\,v]]$ that are $ n$-generated for any odd integer $ n \geqslant 7$. We construct other examples from almost complete intersections of $ \operatorname{grade} \,3$ and their canonical modules. In the generic case the ideals are shown to be normal primes. Finally, we conclude by giving an explicit associative algebra structure for the resolutions. It is this algebra structure that we use to classify the different Gorenstein ideals of $ \operatorname{grade} \,4$, and which may be the key to a complete structure theorem.


References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Geometric algebra, Interscience Tracts in Pure and Appl. Math., vol. 3, Interscience, London, 1957. MR 0082463 (18:553e)
  • [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 0153708 (27:3669)
  • [3] H. Bresinsky, Monomial Gorenstein ideals, Manuscripta Math. 29 (1979), 159-181. MR 545039 (80g:14004)
  • [4] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $ 3$, Amer. J. Math. 99 (1977), 447-485. MR 0453723 (56:11983)
  • [5] -, What makes a complex exact?, J. Algebra 25 (1973), 259-268. MR 0314819 (47:3369)
  • [6] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [7] T. Gulliksen and O. Negard, Un complexe résolvant pour certains ideaux determinantiels, C.R. Acad. Sci. Paris Sér. A 274 (1972), 16-18. MR 0296063 (45:5124)
  • [8] J. Herzog, Certain complexes associated to a sequence and a matrix, Manuscripta Math. 12 (1974), 217-248. MR 0357414 (50:9882)
  • [9] -, Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift Regensburg, 1973.
  • [10] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Lecture Notes in Math., vol. 238, Springer-Verlag, Berlin and New York, 1971. MR 0412177 (54:304)
  • [11] -, On the deviation and the type of a Cohen-Macaulay ring, Manuscripta Math. 9 (1973), 383-388. MR 0330155 (48:8493)
  • [12] M. Hochster, Topics in the homological theory of modules over commutative rings, Regional Conf. Ser. Math. vol. 24, Amer. Math. Soc., Providence, R. I., 1975. MR 0371879 (51:8096)
  • [13] M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175. MR 0347810 (50:311)
  • [14] I. Kaplansky, Commutative rings, rev. ed., Univ. Chicago Press, Chicago, Ill., 1974. MR 0345945 (49:10674)
  • [15] H. Kleppe, Deformation of pfaffian schemes, J. Algebra 53 (1978), 84-92. MR 0498556 (58:16657)
  • [16] E. Kunz, Almost complete intersections are not Gorenstein rings, J. Algebra 28 (1974), 111-115. MR 0330158 (48:8496)
  • [17] A. Kustin and M. Miller, Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four, Math. Z. 173 (1980), 171-184. MR 583384 (81j:13013)
  • [18] -, Algebra structures on minimal resolutions of Gorenstein rings, Regional Conference at George Mason University (August, 1979) (to appear).
  • [19] S. Lang, Algebra, Addison-Wesley, New York, 1971. MR 0197234 (33:5416)
  • [20] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [21] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271-302. MR 0364271 (51:526)
  • [22] J.-P. Serre, Algèbre locale-multiplicités, Lecture Notes in Math., vol. 11, 2nd ed., Springer-Verlag, Berlin and New York, 1965. MR 0201468 (34:1352)
  • [23] R. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N. S.) 1 (1979), 475-511. MR 526968 (81a:20015)
  • [24] J. Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227-232. MR 0319985 (47:8526)
  • [25] K. Watanabe, Some examples of one dimensional Gorenstein domains, Nagoya Math. J. 49 (1973), 101-109. MR 0318140 (47:6689)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13C13, 13H10, 16A03

Retrieve articles in all journals with MSC: 13C13, 13H10, 16A03


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0642342-4
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society