Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Maximal positive boundary value problems as limits of singular perturbation problems


Authors: Claude Bardos and Jeffrey Rauch
Journal: Trans. Amer. Math. Soc. 270 (1982), 377-408
MSC: Primary 35B25; Secondary 35F05, 35L40
DOI: https://doi.org/10.1090/S0002-9947-1982-0645322-8
MathSciNet review: 645322
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study three types of singular perturbations of a symmetric positive system of partial differential equations on a domain $ \Omega \subset {{\mathbf{R}}^n}$. In all cases the limiting behavior is given by the solution of a maximal positive boundary value problem in the sense of Friedrichs. The perturbation is either a second order elliptic term or a term large on the complement of $ \Omega $. The first corresponds to a sort of viscosity and the second to physical systems with vastly different properties in $ \Omega $ and outside $ \Omega $. The results show that in the limit of zero viscosity or infinitely large difference the behavior is described by a maximal positive boundary value problem in $ \Omega $. The boundary condition is determined in a simple way from the system and the singular terms.


References [Enhancements On Off] (What's this?)

  • [1] C. Bardos, D. Brézis and H. Brézis, Perturbations singulières et prolongements maximaux d'opérateurs positifs, Arch. Rational Mech. Anal. 53 (1973), 69-100. MR 0348247 (50:745)
  • [2] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392. MR 0062932 (16:44c)
  • [3] -, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. MR 0100718 (20:7147)
  • [4] -, Well-posed problems of mathematical physics, mimeographed lecture notes, New York Univ.
  • [5] L. Hörmander, Linear partial differential operators, 2nd rev. printing, Springer-Verlag, Berlin, 1964.
  • [6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • [7] -, Singular perturbation and semi group theory, Turbulence and the Navier Stokes Equation, Lecture Notes in Math., vol. 565, Springer-Verlag, Berlin, 1976, pp. 104-112. MR 0458244 (56:16447)
  • [8] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math. 13 (1960), 427-456. MR 0118949 (22:9718)
  • [9] J. L. Lions, Perturbations singulière dans les problèmes aux limites et en contrôl optimal, Lecture Notes in Math., vol. 323, Springer-Verlag, Berlin, 1973. MR 0600331 (58:29078)
  • [10] J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975), 27-59. MR 0377303 (51:13476)
  • [11] L. Sarason, On weak and strong solutions of boundary value problems, Comm. Pure Appl. Math. 15 (1962), 237-288. MR 0150462 (27:460)
  • [12] -, Differentiable solutions of symmetrizable and singular symmetric first order systems, Arch. Rational Mech. Anal. 26 (1967), 357-384. MR 0228808 (37:4387)
  • [13] D. Tartakoff, Regularity of solutions to boundary value problems for first order systems, Indiana Univ. Math. J. 21 (1972), 1113-1129. MR 0440182 (55:13061)
  • [14] M. I. Visik and L. A. Lyusternik, Regular degeneration and boundary layers for linear differential equations with small parameter, Uspehi Mat. Nauk (N.S.) 12 (1957), 3-122; Amer. Math. Soc. Transl. (2) 20 (1962), 239-364. MR 0096041 (20:2539)
  • [15] -, The asymptotic behavior of solutions of linear differential equations with large or quickly changing coefficients and boundary condition, Russian Math. Surveys 4 (1960), 23-92. MR 0124607 (23:A1919)
  • [16] C. Wilcox, Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal. 22 (1966), 37-78. MR 0199531 (33:7675)
  • [17] J. Rauch, Boundary value problems as limits of problems in all space, Séminaire Goulaouic- Schwartz, École Polytechnique, Exposé III, 1978. MR 557514 (81d:35053)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B25, 35F05, 35L40

Retrieve articles in all journals with MSC: 35B25, 35F05, 35L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0645322-8
Keywords: Singular perturbations, boundary layers, maximal positive boundary value problems
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society