Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spectral properties of orthogonal polynomials on unbounded sets


Author: T. S. Chihara
Journal: Trans. Amer. Math. Soc. 270 (1982), 623-639
MSC: Primary 42C05
DOI: https://doi.org/10.1090/S0002-9947-1982-0645334-4
MathSciNet review: 645334
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider orthogonal polynomials when the three term recurrence formula for the monic polynomials has unbounded coefficients. We obtain information relative to three questions: Under what conditions on the coefficients will the derived set of the spectrum have a finite infimum $ \sigma $? If $ \sigma $ is finite, when will there be at most finitely many spectral points smaller than $ \sigma $; and when will the distribution function be continuous at $ \sigma $?


References [Enhancements On Off] (What's this?)

  • [1] W. A. Al-Salam, Characterization of a certain class of orthogonal polynomials related to elliptic functions, Ann. Mat. Pura Appl. 67 (1965), 75-94. MR 0178175 (31:2433)
  • [2] W. A. Al-Salam and L. Carlitz, Some orthogonal $ q$-polynomials, Math. Nachr. 30 (1965), 47-61. MR 0197804 (33:5967)
  • [3] R. Askey and J. Wilson, A set of hypergeometric orthogonal polynomials, SIAM J. Math. Anal, (to appear). MR 661596 (83h:33010)
  • [4] O. Blumenthal, Über die entwicklung einer willkürlichen Funktion nach den Nennern des Kettenbruches für $ \smallint _{ - \infty }^\infty [\phi (\xi )/(z - \xi )]\,d\xi $, Dissertation, Göttingen, 1898.
  • [5] T. S. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104 (1962), 1-16. MR 0138933 (25:2373)
  • [6] -, On recursively defined orthogonal polynomials, Proc. Amer. Math. Soc. 16 (1965), 702-710. MR 0179398 (31:3646)
  • [7] -, On indeterminate Hamburger moment problems, Pacific J. Math. 27 (1968), 475-484. MR 0238038 (38:6314)
  • [8] -, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [9] -, Orthogonal polynomials whose distribution functions have finite point spectra, SIAM J. Math. Anal. 11 (1980), 358-364. MR 559875 (81e:42032)
  • [10] T. S. Chihara and P. G. Nevai, Orthogonal polynomials and measures with finitely many point masses (to appear). MR 665989 (83i:42017)
  • [11] J. S. Geronimo and K. M. Case, Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc. 258 (1980), 467-494. MR 558185 (82c:81138)
  • [12] P. G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc., no. 213 (1979). MR 519926 (80k:42025)
  • [13] -, Distribution of zeros of orthogonal polynomials, Trans. Amer. Math. Soc. 249 (1979), 341-361. MR 525677 (80j:42041)
  • [14] -, Orthogonal polynomials defined by a recurrence relation, Trans. Amer. Math. Soc. 250 (1980), 369-384. MR 530062 (80d:42011)
  • [15] J. Sherman, On the numerators of the convergents of the Stieltjes continued fractions, Trans. Amer. Math. Soc. 35 (1933), 64-87. MR 1501672
  • [16] J. Shohat and J. D. Tamarkin, The problem of moments, Math. Surveys No. 1, Amer. Math. Soc., Providence, R. I., 1943, 1950. MR 0008438 (5:5c)
  • [17] H. S. Wall, Analytic theory of continued fractions, Van Nostrand, Princeton, N.J., 1948. MR 0025596 (10:32d)
  • [18] J. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690-701. MR 579561 (82a:33014)
  • [19] -, Hypergeometric series recurrence relations and some new orthogonal functions, Ph.D. Thesis, Univ. of Wisconsin, Madison, 1978.
  • [20] R. Askey and J. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or $ 6 - j$ symbols, SIAM J. Math. Anal. 10 (1979), 1008-1016. MR 541097 (80k:33012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C05

Retrieve articles in all journals with MSC: 42C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0645334-4
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society